Topic
Mode scrambler
About: Mode scrambler is a(n) research topic. Over the lifetime, 896 publication(s) have been published within this topic receiving 13595 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: Single-mode excitation of step-index multimode fibers with light sources with short temporal coherence lengths is demonstrated and designs with reduced microbending-induced mode coupling are described that allow the propagation of the fundamental mode over long lengths with negligible mode coupling even in the presence of tight fiber bends.
Abstract: Single-mode excitation of step-index multimode fibers with light sources with short temporal coherence lengths is demonstrated. Multimode fiber designs with reduced microbending-induced mode coupling are described that allow the propagation of the fundamental mode over long lengths with negligible mode coupling even in the presence of tight fiber bends. At a wavelength of 1.56microm a fiber with a core diameter of 45microm can preserve the fundamental mode for a propagation length of ~20m . Such fibers allow coiling with a coil diameter as small as 7cm.
343 citations
[...]
TL;DR: In this paper, the authors designed and built a new type of spatial mode multiplexer based on MPLC, with very low intrinsic loss and high mode selectivity, and demonstrated its performance for the first 6 eigenmodes of a few-mode fiber.
Abstract: We designed and built a new type of spatial mode multiplexer, based on Multi-Plane Light Conversion (MPLC), with very low intrinsic loss and high mode selectivity. In this first demonstration we show that a typical 3-mode multiplexer achieves a mode selectivity better than −23 dB and a total insertion efficiency of −4.1 dB (optical coating improvements could increase efficiency to −2.4 dB), across the full C-band. Moreover this multiplexer is able to perform any mode conversion, and we demonstrate its performance for the first 6 eigenmodes of a few-mode fiber: LP01, LP11a, LP11b, LP02, LP21a and LP21b.
264 citations
[...]
TL;DR: It is shown that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss.
Abstract: Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).
210 citations
[...]
TL;DR: Efficient and selective coupling between a single-mode fiber and the LP(11) mode of a double-mode Fiber is demonstrated in an evanescent directional coupler that has application as a modal filter for the construction of in-line all-fiber optical components.
Abstract: Efficient and selective coupling between a single-mode fiber and the LP11 mode of a double-mode fiber is demonstrated in an evanescent directional coupler. With greater than 90% coupling to the LP11 mode, suppression of the coupled power to the lower-order LP01 mode was measured to be at least 24 dB. This device has application as a modal filter for the construction of in-line all-fiber optical components.
180 citations
Patent•
[...]
TL;DR: In this article, a LiNbO3 optical fiber exhibiting a ferroelectric bi-domain structure is used to convert a light signal launched in the fundamental mode of the optical fiber to a second order signal propagating in the second order mode.
Abstract: A mode converter comprises an a-axis LiNbO3 optical fiber exhibiting a ferroelectric bi-domain structure. The fiber is subject to an electrical field that induces a +π/2 phase retardation in one domain of the fiber and a -π/2 phase retardation in the other domain. A light signal launched in the fundamental mode of the fiber is converted into a light signal propagating in the second order mode. When the electrical field is selected so that the phase retardations are not multiples of π/2, the mode conversion is partial and the LiNbO3 fiber can operate as an optical switch or as an amplitude modulator. The mode converter can also be operated as a second harmonic generator. The fiber is heated to a phase matching temperature so that a signal launched in the fundamental mode of the fiber and at a frequency ω is converted to the second order mode at a frequency 2ω. The LiNbO3 fiber can also simultaneously operate as an optical switch and as a second harmonic generator. Other non-linear interactions are possible such as sum or difference frequency generation or parametric generation. The various embodiments of the present invention are reciprocal.
179 citations