scispace - formally typeset
Topic

Model predictive control

About: Model predictive control is a(n) research topic. Over the lifetime, 39662 publication(s) have been published within this topic receiving 660470 citation(s).
Papers
More filters

Journal ArticleDOI
01 Jun 2000-Automatica
TL;DR: This review focuses on model predictive control of constrained systems, both linear and nonlinear, and distill from an extensive literature essential principles that ensure stability to present a concise characterization of most of the model predictive controllers that have been proposed in the literature.
Abstract: Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petro-chemical and related industries where satisfaction of constraints is particularly important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear and/or time-varying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved on-line is exactly equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue.

7,336 citations


Book
01 Dec 2001-
TL;DR: A standard formulation of Predictive Control is presented, with examples of step response and transfer function formulations, and a case study of robust predictive control in the context of MATLAB.
Abstract: 1. Introduction to Predictive Control. 2. A Standard Formulation of Predictive Control. 3. Solving Predictive Control Problems. 4. Step Response and Transfer Function Formulations. 5. Tuning. 6. Stability. 7. Robust Predictive Control. 8. Perspectives. 9. Case Studies. 10. The Model Predictive Control Toolbox. References Appendices A. Some Commercial MPC Products B. MATLAB Program basicmpc C. The MPC Toolbox D. Solutions to Problems

5,370 citations


Journal ArticleDOI
03 May 1989-Automatica
TL;DR: The flexible constraint handling capabilities of MPC are shown to be a significant advantage in the context of the overall operating objectives of the process industries and the 1-, 2-, and ∞-norm formulations of the performance objective are discussed.
Abstract: We refer to Model Predictive Control (MPC) as that family of controllers in which there is a direct use of an explicit and separately identifiable model. Control design methods based on the MPC concept have found wide acceptance in industrial applications and have been studied by academia. The reason for such popularity is the ability of MPC designs to yield high performance control systems capable of operating without expert intervention for long periods of time. In this paper the issues of importance that any control system should address are stated. MPC techniques are then reviewed in the light of these issues in order to point out their advantages in design and implementation. A number of design techniques emanating from MPC, namely Dynamic Matrix Control, Model Algorithmic Control, Inferential Control and Internal Model Control, are put in perspective with respect to each other and the relation to more traditional methods like Linear Quadratic Control is examined. The flexible constraint handling capabilities of MPC are shown to be a significant advantage in the context of the overall operating objectives of the process industries and the 1-, 2-, and ∞-norm formulations of the performance objective are discussed. The application of MPC to non-linear systems is examined and it is shown that its main attractions carry over. Finally, it is explained that though MPC is not inherently more or less robust than classical feedback, it can be adjusted more easily for robustness.

4,904 citations


Journal ArticleDOI
Abstract: This paper provides an overview of commercially available model predictive control (MPC) technology, both linear and nonlinear, based primarily on data provided by MPC vendors. A brief history of industrial MPC technology is presented first, followed by results of our vendor survey of MPC control and identification technology. A general MPC control algorithm is presented, and approaches taken by each vendor for the different aspects of the calculation are described. Identification technology is reviewed to determine similarities and differences between the various approaches. MPC applications performed by each vendor are summarized by application area. The final section presents a vision of the next generation of MPC technology, with an emphasis on potential business and research opportunities. r 2002 Elsevier Science Ltd. All rights reserved.

4,410 citations


Book
26 Jan 2012-
Abstract: 1 Introduction to Model Predictive Control.- 1.1 MPC Strategy.- 1.2 Historical Perspective.- 1.3 Industrial Technology.- 1.4 Outline of the Chapters.- 2 Model Predictive Controllers.- 2.1 MPC Elements.- 2.1.1 Prediction Model.- 2.1.2 Objective Function.- 2.1.3 Obtaining the Control Law.- 2.2 Review of Some MPC Algorithms.- 2.3 State Space Formulation.- 3 Commercial Model Predictive Control Schemes.- 3.1 Dynamic Matrix Control.- 3.1.1 Prediction.- 3.1.2 Measurable Disturbances.- 3.1.3 Control Algorithm.- 3.2 Model Algorithmic Control.- 3.2.1 Process Model and Prediction.- 3.2.2 Control Law.- 3.3 Predictive Functional Control.- 3.3.1 Formulation.- 3.4 Case Study: A Water Heater.- 3.5 Exercises.- 4 Generalized Predictive Control.- 4.1 Introduction.- 4.2 Formulation of Generalized Predictive Control.- 4.3 The Coloured Noise Case.- 4.4 An Example.- 4.5 Closed-Loop Relationships.- 4.6 The Role of the T Polynomial.- 4.6.1 Selection of the T Polynomial.- 4.6.2 Relationships with Other Formulations.- 4.7 The P Polynomial.- 4.8 Consideration of Measurable Disturbances.- 4.9 Use of a Different Predictor in GPC.- 4.9.1 Equivalent Structure.- 4.9.2 A Comparative Example.- 4.10 Constrained Receding Horizon Predictive Control.- 4.10.1 Computation of the Control Law.- 4.10.2 Properties.- 4.11 Stable GPC.- 4.11.1 Formulation of the Control Law.- 4.12 Exercises.- 5 Simple Implementation of GPC for Industrial Processes.- 5.1 Plant Model.- 5.1.1 Plant Identification: The Reaction Curve Method.- 5.2 The Dead Time Multiple of the Sampling Time Case.- 5.2.1 Discrete Plant Model.- 5.2.2 Problem Formulation.- 5.2.3 Computation of the Controller Parameters.- 5.2.4 Role of the Control-weighting Factor.- 5.2.5 Implementation Algorithm.- 5.2.6 An Implementation Example.- 5.3 The Dead Time Nonmultiple of the Sampling Time Case.- 5.3.1 Discrete Model of the Plant.- 5.3.2 Controller Parameters.- 5.3.3 Example.- 5.4 Integrating Processes.- 5.4.1 Derivation of the Control Law.- 5.4.2 Controller Parameters.- 5.4.3 Example.- 5.5 Consideration of Ramp Setpoints.- 5.5.1 Example.- 5.6 Comparison with Standard GPC.- 5.7 Stability Robustness Analysis.- 5.7.1 Structured Uncertainties.- 5.7.2 Unstructured Uncertainties.- 5.7.3 General Comments.- 5.8 Composition Control in an Evaporator.- 5.8.1 Description of the Process.- 5.8.2 Obtaining the Linear Model.- 5.8.3 Controller Design.- 5.8.4 Results.- 5.9 Exercises.- 6 Multivariable Model Predictive Control.- 6.1 Derivation of Multivariable GPC.- 6.1.1 White Noise Case.- 6.1.2 Coloured Noise Case.- 6.1.3 Measurable Disturbances.- 6.2 Obtaining a Matrix Fraction Description.- 6.2.1 Transfer Matrix Representation.- 6.2.2 Parametric Identification.- 6.3 State Space Formulation.- 6.3.1 Matrix Fraction and State Space Equivalences.- 6.4 Case Study: Flight Control.- 6.5 Convolution Models Formulation.- 6.6 Case Study: Chemical Reactor.- 6.6.1 Plant Description.- 6.6.2 Obtaining the Plant Model.- 6.6.3 Control Law.- 6.6.4 Simulation Results.- 6.7 Dead Time Problems.- 6.8 Case Study: Distillation Column.- 6.9 Multivariable MPC and Transmission Zeros.- 6.9.1 Simulation Example.- 6.9.2 Tuning MPC for Processes with OUD Zeros.- 6.10 Exercises.- 7 Constrained Model Predictive Control.- 7.1 Constraints and MPC.- 7.1.1 Constraint General Form.- 7.1.2 Illustrative Examples.- 7.2 Constraints and Optimization.- 7.3 Revision of Main Quadratic Programming Algorithms.- 7.3.1 The Active Set Methods.- 7.3.2 Feasible Direction Methods.- 7.3.3 Initial Feasible Point.- 7.3.4 Pivoting Methods.- 7.4 Constraints Handling.- 7.4.1 Slew Rate Constraints.- 7.4.2 Amplitude Constraints.- 7.4.3 Output Constraints.- 7.4.4 Constraint Reduction.- 7.5 1-norm.- 7.6 Case Study: A Compressor.- 7.7 Constraint Management.- 7.7.1 Feasibility.- 7.7.2 Techniques for Improving Feasibility.- 7.8 Constrained MPC and Stability.- 7.9 Multiobjective MPC.- 7.9.1 Priorization of Objectives.- 7.10 Exercises.- 8 Robust Model Predictive Control.- 8.1 Process Models and Uncertainties.- 8.1.1 Truncated Impulse Response Uncertainties.- 8.1.2 Matrix Fraction Description Uncertainties.- 8.1.3 Global Uncertainties.- 8.2 Objective Functions.- 8.2.1 Quadratic Cost Function.- 8.2.2 ?-? norm.- 8.2.3 1-norm.- 8.3 Robustness by Imposing Constraints.- 8.4 Constraint Handling.- 8.5 Illustrative Examples.- 8.5.1 Bounds on the Output.- 8.5.2 Uncertainties in the Gain.- 8.6 Robust MPC and Linear Matrix Inequalities.- 8.7 Closed-Loop Predictions.- 8.7.1 An Illustrative Example.- 8.7.2 Increasing the Number of Decision Variables.- 8.7.3 Dynamic Programming Approach.- 8.7.4 Linear Feedback.- 8.7.5 An Illustrative Example.- 8.8 Exercises.- 9 Nonlinear Model Predictive Control.- 9.1 Nonlinear MPC Versus Linear MPC.- 9.2 Nonlinear Models.- 9.2.1 Empirical Models.- 9.2.2 Fundamental Models.- 9.2.3 Grey-box Models.- 9.2.4 Modelling Example.- 9.3 Solution of the NMPC Problem.- 9.3.1 Problem Formulation.- 9.3.2 Solution.- 9.4 Techniques for Nonlinear Predictive Control.- 9.4.1 Extended Linear MPC.- 9.4.2 Local Models.- 9.4.3 Suboptimal NPMC.- 9.4.4 Use of Short Horizons.- 9.4.5 Decomposition of the Control Sequence.- 9.4.6 Feedback Linearization.- 9.4.7 MPC Based on Volterra Models.- 9.4.8 Neural Networks.- 9.4.9 Commercial Products.- 9.5 Stability and Nonlinear MPC.- 9.6 Case Study: pH Neutralization Process.- 9.6.1 Process Model.- 9.6.2 Results.- 9.7 Exercises.- 10 Model Predictive Control and Hybrid Systems.- 10.1 Hybrid System Modelling.- 10.2 Example: A Jacket Cooled Batch Reactor.- 10.2.1 Mixed Logical Dynamical Systems.- 10.2.2 Example.- 10.3 Model Predictive Control of MLD Systems.- 10.3.1 Branch and Bound Mixed Integer Programming.- 10.3.2 An Illustrative Example.- 10.4 Piecewise Affine Systems.- 10.4.1 Example: Tankwith Different Area Sections.- 10.4.2 Reach Set, Controllable Set, and STG Algorithm.- 10.5 Exercises.- 11 Fast Methods for Implementing Model Predictive Control.- 11.1 Piecewise Affinity of MPC.- 11.2 MPC and Multiparametric Programming.- 11.3 Piecewise Implementation of MPC.- 11.3.1 Illustrative Example: The Double Integrator.- 11.3.2 Nonconstant References and Measurable Disturbances.- 11.3.3 Example.- 11.3.4 The 1-norm and ?-norm Cases.- 11.4 Fast Implementation of MPC forUncertain Systems.- 11.4.1 Example.- 11.4.2 The Closed-Loop Min-max MPC.- 11.5 Approximated Implementation for MPC.- 11.6 Fast Implementation of MPC and Dead Time Considerations.- 11.7 Exercises.- 12 Applications.- 12.1 Solar Power Plant.- 12.1.1 Selftuning GPC Control Strategy.- 12.1.2 Gain Scheduling Generalized Predictive Control.- 12.2 Pilot Plant.- 12.2.1 Plant Description.- 12.2.2 Plant Control.- 12.2.3 Flow Control.- 12.2.4 Temperature Control at the Exchanger Output.- 12.2.5 Temperature Control in the Tank.- 12.2.6 Level Control.- 12.2.7 Remarks.- 12.3 Model Predictive Control in a Sugar Refinery.- 12.4 Olive Oil Mill.- 12.4.1 Plant Description.- 12.4.2 Process Modelling and Validation.- 12.4.3 Controller Synthesis.- 12.4.4 Experimental Results.- 12.5 Mobile Robot.- 12.5.1 Problem Definition.- 12.5.2 Prediction Model.- 12.5.3 Parametrization of the Desired Path.- 12.5.4 Potential Function for Considering Fixed Obstacles.- 12.5.5 The Neural Network Approach.- 12.5.6 Training Phase.- 12.5.7 Results.- A Revision of the Simplex Method.- A.1 Equality Constraints.- A.2 Finding an Initial Solution.- A.3 Inequality Constraints.- B Dynamic Programming and Linear Quadratic Optimal Control.- B.1 LinearQuadratic Problem.- B.2 InfiniteHorizon.- References.

3,909 citations


Network Information
Related Topics (5)
Robust control

42K papers, 810.5K citations

96% related
Control theory

299.6K papers, 3.1M citations

96% related
Adaptive control

60.1K papers, 1.2M citations

96% related
Nonlinear control

22.4K papers, 600K citations

96% related
State observer

13.4K papers, 226.7K citations

95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202290
20212,940
20203,244
20193,114
20182,681
20172,588

Top Attributes

Show by:

Topic's top 5 most impactful authors

Jose Rodriguez

348 papers, 21.6K citations

Manfred Morari

239 papers, 26.7K citations

Ralph Kennel

216 papers, 6.6K citations

Alberto Bemporad

203 papers, 12K citations

Eduardo F. Camacho

198 papers, 13.4K citations