scispace - formally typeset
Search or ask a question

Showing papers on "Modulation published in 2010"


Journal ArticleDOI
TL;DR: It is shown that very significant downlink throughput is achievable with simple and efficient channel state feedback, provided that the feedback link is properly designed.
Abstract: In this paper, we consider a multiple-input-multiple-output (MIMO) fading broadcast channel and compute achievable ergodic rates when channel state information (CSI) is acquired at the receivers via downlink training and it is provided to the transmitter by channel state feedback. Unquantized (analog) and quantized (digital) channel state feedback schemes are analyzed and compared under various assumptions. Digital feedback is shown to be potentially superior when the feedback channel uses per channel state coefficient is larger than 1. Also, we show that by proper design of the digital feedback link, errors in the feedback have a minor effect even if simple uncoded modulation is used on the feedback channel. We discuss first the case of an unfaded additive white Gaussian noise (AWGN) feedback channel with orthogonal access and then the case of fading MIMO multiple access (MIMO-MAC). We show that by exploiting the MIMO-MAC nature of the uplink channel, a much better scaling of the feedback channel resource with the number of base station (BS) antennas can be achieved. Finally, for the case of delayed feedback, we show that in the realistic case where the fading process has (normalized) maximum Doppler frequency shift 0 ? F < 1/2, a fraction 1 - 2F of the optimal multiplexing gain is achievable. The general conclusion of this work is that very significant downlink throughput is achievable with simple and efficient channel state feedback, provided that the feedback link is properly designed.

684 citations


Book ChapterDOI
25 Oct 2010
TL;DR: This work introduces the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, proves that it is also NP-complete and presents various algorithms to solve it.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level taking into account the transmission distance. Using algorithms developed in our previous works, we evaluate the spectrum utilization gains that can be obtained by utilizing the elastic bandwidth allocation of OFDM, when compared to a traditional WDM network.

537 citations


Journal ArticleDOI
TL;DR: Comparisons among the modulation techniques are discussed, and it is proven that the proposed modulation for two- and three-level inverters presents the best results.
Abstract: In some photovoltaic (PV) applications, it is possible to remove the transformer of a system in order to reduce losses, cost, and size. In transformerless systems, the PV module parasitic capacitance can introduce leakage currents in which the amplitude depends on the converter topology, on the pulsewidth modulation, and on the resonant circuit comprised by the system components. Based on the common-mode voltage model, modulation techniques are proposed to eliminate the leakage current in transformerless PV systems without requiring any modification on the converter and any additional hardware. The main drawback is that the proposed modulation technique for two-level inverters can only be used with 650-V dc link in the case of a 110-V (rms) grid phase voltage. Comparisons among the modulation techniques are discussed, and it is proven that the proposed modulation for two- and three-level inverters presents the best results. To validate the models used in the simulations, an experimental three-phase inverter is used.

288 citations


Journal ArticleDOI
Ezra Ip1
TL;DR: In this article, the authors compare single carrier (SC) versus orthogonal frequency-division multiplexing (OFDM) for polarization-multiplexed transmission and show that at realistic data rates and transmission distances, polarization mode dispersion does not significantly degrade the performance of digital backpropagation and can be mitigated by a post-BP linear equalizer.
Abstract: Digital backpropagation (BP) is a universal method for jointly compensating dispersion and nonlinear impairments in optical fiber and is applicable to signals of any modulation format. In this paper, we compare single carrier (SC) versus orthogonal frequency-division multiplexing (OFDM) for polarization-multiplexed transmission. We show that at realistic data rates and transmission distances, polarization mode dispersion does not significantly degrade the performance of BP and can be mitigated by a post-BP linear equalizer. Dispersion unmanaged transmission can significantly reduce nonlinearity, and in this transmission regime, SC and OFDM have similar nonlinear tolerance. Multichannel BP is effective at mitigating interchannel nonlinearity for point-to-point links.

267 citations


Journal ArticleDOI
TL;DR: The principle of operation, carrier-based pulse width modulation and a capacitors voltage balancing technique for three-level and five-level modular inverters are discussed and the results are discussed.
Abstract: Modular multilevel inverters have been proposed as a potential replacement for diode-clamped inverters in high-voltage, high-power applications as they can be extended to any number of levels without introducing significantly more complexity to the control system. This study discusses in detail the principle of operation, carrier-based pulse width modulation and a capacitors voltage balancing technique for three-level and five-level modular inverters. The modulation and balancing strategy presented are confirmed by simulations and the results are discussed.

247 citations


Journal ArticleDOI
TL;DR: The obtained results show that the SHMPWM technique improves the results of previous selective harmonic elimination pulsewidth modulation techniques for very low switching frequencies, leading its use to an important reduction of the bulky and expensive filtering elements.
Abstract: In high-power applications, the maximum switching frequency is limited due to thermal losses. This leads to highly distorted output waveforms. In such applications, it is necessary to filter the output waveforms using bulky passive filtering systems. The recently presented selective harmonic mitigation pulsewidth modulation (SHMPWM) technique produces output waveforms where the harmonic distortion is limited, fulfilling specific grid codes when the number of switching angles is high enough. The related technique has been previously presented using a switching frequency that is equal to 750 Hz. In this paper, a special implementation of the SHMPWM technique optimized for very low switching frequency is studied. Experimental results obtained applying SHMPWM to a three-level neutral-point-clamped converter using a switching frequency that is equal to 350 Hz are presented. The obtained results show that the SHMPWM technique improves the results of previous selective harmonic elimination pulsewidth modulation techniques for very low switching frequencies. This fact highlights that the SHMPWM technique is very useful in high-power applications, leading its use to an important reduction of the bulky and expensive filtering elements.

223 citations


Journal ArticleDOI
TL;DR: TCSM exhibits significant performance enhancements in the presence of realistic channel conditions such as Rician fading and spatial correlation (SC) and the complexity of the proposed scheme is shown to be 80% less than the V-BLAST complexity.
Abstract: Trellis coded modulation (TCM) is a well known scheme that reduces power requirements without any bandwidth expansion. In TCM, only certain sequences of successive constellation points are allowed (mapping by set partitioning). The novel idea in this paper is to apply the TCM concept to the antenna constellation points of spatial modulation (SM). The aim is to enhance SM performance in correlated channel conditions. SM considers the multiple transmit antennas as additional constellation points and maps a first part of a block of information bits to the transmit antenna indices. Therefore, spatial multiplexing gains are retained and spectral efficiency is boosted. The second part of the block of information bits is mapped to a complex symbol using conventional digital modulation schemes. At any particular time instant, only one antenna is active. The receiver estimates the transmitted symbol and the active antenna index and uses the two estimates to retrieve the original block of data bits. In this paper, TCM partitions the entire set of transmit antennas into sub-sets such that the spacing between antennas within a particular sub-set is maximized. The scheme is called trellis coded spatial modulation (TCSM). Tight analytical performance bounds over correlated fading channels are proposed in this paper. In addition, the performance and complexity of TCSM is compared to the performance of SM, coded V-BLAST (vertical Bell Labs layered space-time) applying near optimum sphere decoder algorithm, and Alamouti scheme combined with TCM. Also, the performance of all schemes with turbo coded modulation is presented. It is shown that under the same spectral efficiency, TCSM exhibits significant performance enhancements in the presence of realistic channel conditions such as Rician fading and spatial correlation (SC). In addition, the complexity of the proposed scheme is shown to be 80% less than the V-BLAST complexity.

212 citations


Journal ArticleDOI
12 Oct 2010-ACS Nano
TL;DR: A triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor, which offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.
Abstract: We propose and experimentally demonstrate a triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor. The ambipolar nature of electronic transport in graphene transistors leads to increased amplifier functionality as compared to amplifiers built with unipolar semiconductor devices. The ambipolar graphene transistors can be configured as n-type, p-type, or hybrid-type by changing the gate bias. As a result, the single-transistor graphene amplifier can operate in the common-source, common-drain, or frequency multiplication mode, respectively. This in-field controllability of the single-transistor graphene amplifier can be used to realize the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless applications. It also offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.

197 citations


Journal ArticleDOI
TL;DR: In this paper, a four-symbol modulation is created by repeated switching of phase shifters in a phased array, in a technique known as directional modulation (DM), where phase shifts are chosen to minimize the bit error rate (BER) in a line-of-sight channel in a desired direction while maximizing the BER elsewhere.
Abstract: A four-symbol modulation is created by repeated switching of phase shifters in a phased array, in a technique known as directional modulation (DM). The phase shifts are chosen to minimize the bit error rate (BER) in a line-of-sight channel in a desired direction while maximizing the BER elsewhere. A DM transmitter is demonstrated in an anechoic chamber, and results are compared with a traditional baseband QPSK modulation using the same phased array. Experiments indicate that the DM transmitter creates a narrower region of low BERs around the desired direction than the traditional phased array while maintaining high BERs in the sidelobe regions.

185 citations


Patent
12 Feb 2010
TL;DR: In this article, a method of generating a keyboard switch haptic sensation in a coupled system comprising a touch-sensitive surface and a force exciter or actuator coupled to the touch sensitive surface was proposed.
Abstract: A method of generating a keyboard switch haptic sensation in a coupled system comprising a touch-sensitive surface and a force exciter or actuator coupled to the touch-sensitive surface, the method comprising generating a carrier wave signal at frequencies within the frequency bandwidth of the coupled system, modulating the carrier wave signal with a modulation envelope so that the modulated carrier wave signal has a closely spaced pair of peaks, and driving the exciter or actuator with the modulated carrier wave signal to excite the touch-sensitive surface to provide a closely spaced pair of impulses whereby the keyboard switch haptic sensation is simulated to a user touching the touch-sensitive surface.

179 citations


Journal ArticleDOI
TL;DR: Compared with the traditional cumulant-based classifiers, the proposed K-S classifiers offer superior classification performance, require less number of signal samples (thus is fast), and is more robust to various channel impairments.
Abstract: A new approach to modulation classification based on the Kolmogorov-Smirnov (K-S) test is proposed. The K-S test is a non-parametric method to measure the goodness of fit. The basic procedure involves computing the empirical cumulative distribution function (ECDF) of some decision statistic derived from the received signal, and comparing it with the CDFs or the ECDFs of the signal under each candidate modulation format. The K-S-based modulation classifiers are developed for various channels, including the AWGN channel, the flat-fading channel, the OFDM channel, and the channel with unknown phase and frequency offsets, as well as the non-Gaussian noise channel, for both QAM and PSK modulations. Extensive simulation results demonstrate that compared with the traditional cumulant-based classifiers, the proposed K-S classifiers offer superior classification performance, require less number of signal samples (thus is fast), and is more robust to various channel impairments.

Proceedings ArticleDOI
23 May 2010
TL;DR: It is shown that the proposed OSM technique achieves twice and four times the data rate as compared to OOK (on-off keying) and PPM (pulse-position modulation), respectively.
Abstract: In this paper, a multiple-input multiple-output (MIMO) technique for indoor optical wireless (OW) communication is proposed. The technique is referred to as \emph{optical spatial modulation (OSM)}. The key concept is based on spatial modulation (SM). At any given time instant, only one transmitter is active and the others are inactive. A transmitter in space is considered as a spatial constellation point which is assigned a unique bit sequence. Consequently, transmitters are turned on and off depending on the incoming data bits, similar to the activation of constellation points in traditional digital modulation schemes. Hence, a data rate of the base two logarithm of the number of transmit units is achieved. The active transmitter radiates a certain intensity level at a particular time instant. At the receiver side, the optimal SM detector is slightly modified and used to estimate the spatial constellation point. The estimated spatial constellation point is used to arrive at the original bit stream via de-mapping. The upper bound bit-error-ratio (BER) of OSM is analyzed for a MIMO configuration consisting of four transmit units (light emitting diodes (LEDs)) and four receive units (photo diodes (PDs)) in a room. The BER performance is determined for different transmitter and receiver separation distances and different transmitter half power semiangles. It is shown that the proposed OSM technique achieves twice and four times the data rate as compared to OOK (on-off keying) and PPM (pulse-position modulation), respectively.

Journal ArticleDOI
TL;DR: The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation.
Abstract: The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.

Proceedings ArticleDOI
21 Mar 2010
TL;DR: In this paper, the authors demonstrate the record total capacity of 69.1 Tb/s with a spectral efficiency of 6.4 b/s/Hz by employing 21.4-Gbaud 16-QAM modulation, blind digital coherent detection, and 10.8-THz ultra-wideband amplification in the C- and extended L-bands.
Abstract: We demonstrate the record total capacity of 69.1 Tb/s with a spectral efficiency of 6.4 b/s/Hz by employing 21.4-Gbaud 16-QAM modulation, blind digital coherent detection, and 10.8-THz ultra-wideband amplification in the C- and extended L-bands.

Journal ArticleDOI
Jianjun Yu, Xiang Zhou1
TL;DR: It is shown that high-speed QPSK, 8PSK.
Abstract: We review and summarize several 100G per channel high-capacity transmission systems enabled by advanced technologies such as multilevel modulation format, new low-loss and large effective area fiber, hybrid EDFA/Raman amplification, and digital coherent detection technologies. We show that high-speed QPSK, 8PSK, 8QAM, and 16QAM can all be generated using commercially available optical modulators using only binary electrical drive signals through novel synthesis methods, and that all of these modulation formats can be detected using digital coherent detection. We also show our latest research results on 400 Gb/s and 1 Tb/s per channel by using orthogonal DWDM transmission technologies.

Journal ArticleDOI
TL;DR: Results indicate that compared to a traditional reconfigurable array, the directional modulation array allows information to be sent over a narrower beamwidth and provides more selectivity in the possible transmit angles.
Abstract: An array with pattern-reconfigurable elements is used to generate a digital modulation by switching the elements for every symbol. This technique is known as directional modulation. Because the modulation is generated at the antenna level, it gives control over the directions in which data is sent, unlike baseband modulation which transmits the same data in all directions at different power levels. A procedure for determining how to switch the elements to transmit only in a specified direction is outlined. Results indicate that compared to a traditional reconfigurable array, the directional modulation array allows information to be sent over a narrower beamwidth. Additionally, the method provides more selectivity in the possible transmit angles. Measured and calculated results from a four-element reconfigurable array are presented.

Journal ArticleDOI
TL;DR: A software-defined real-time optical multiformat transmitter enabling format switching in the nanosecond regime without changing the transmitter hardware is demonstrated.
Abstract: We demonstrate a software-defined real-time optical multiformat transmitter. Here, eight different modulation formats are shown. Data rate and modulation formats are defined through software accessible look-up tables enabling format switching in the nanosecond regime without changing the transmitter hardware. No data are lost during the switching process. SP-64 quadrature amplitude modulation at 28 Gbd has been generated and tested. This allows us to generate a 336-Gb/s real-time pseudorandom bit sequence in a dual polarization setup.

Journal ArticleDOI
TL;DR: In this article, the authors performed a comprehensive investigation of techniques to implement on-off keying (OOK), bi-phase modulation (BPM), pulse-amplitude modulation (PAM), pulse shape modulation (PSM), and PPM based on a phase modulator and an asymmetric Mach-Zehnder interferometer.
Abstract: The distribution of ultra-wideband (UWB) signals over optical fiber, or UWB over fiber (UWBoF), is proposed to extend the area of coverage and to offer the availability of undisrupted service across different networks. Various techniques have been reported recently for optical UWB pulse generation, but the study on the implementation of different modulation schemes based on these UWB pulses has just started. In addition, the influence of fiber dispersion on the power spectral density (PSD) of an UWB signal, and the bit-error-rate performance of an UWBoF system with different modulation schemes have not been systematically investigated. In this paper, we perform a comprehensive investigation of techniques to implement on-off keying (OOK), bi-phase modulation (BPM), pulse-amplitude modulation (PAM), pulse shape modulation (PSM), and pulse-position modulation (PPM) based on a phase modulator and an asymmetric Mach-Zehnder interferometer (AMZI). The AMZI is electrically reconfigurable by employing a polarization modulator (PolM). UWB signals with OOK, BPM, PAM, PSM, and PPM are realized by adjusting the polarization controllers in the AMZI and the amplitude of the electrical drive signal to the PolM. The UWB signals with OOK, BPM, PAM, and PSM are transmitted over a wired (single-mode fiber) and wireless link. Error-free operation is obtained for all the modulation schemes. The power penalties of transmission are less than 1.8 dB. The fiber dispersion on the PSD of the UWB signals is also theoretically studied and experimentally evaluated. An excellent agreement between the theoretical and the experimental results is achieved. The system is potentially integratable, which may provide a simple and cost-effective solution for UWBoF applications.

Journal ArticleDOI
TL;DR: Digital signal transmission at 300 GHz using a versatile Schottky mixer based measurement system designed for terahertz communication channel modelling and propagation studies is demonstrated and analysed.
Abstract: Recently, analogue video signal transmission at 300 GHz has been demonstrated using a versatile Schottky mixer based measurement system designed for terahertz communication channel modelling and propagation studies. In this reported work, digital signal transmission at 300 GHz using this system is demonstrated and analysed. The performance of the digital transmission setup is characterised with respect to phase noise and modulation errors. For demonstration, high data rate digital video signals have been transmitted over a distance of up to 52 m.

Journal ArticleDOI
TL;DR: In this article, the authors proposed an optical orthogonal frequency division multiplexing (O-OFDM) scheme, suitable for intensity-modulated direct-detection systems, where the modulation/demodulation processing takes advantage of the fast Hartley transform algorithm.
Abstract: We present a novel optical orthogonal frequency division multiplexing (O-OFDM) scheme, suitable for intensity-modulated direct-detection systems, where the modulation/demodulation processing takes advantage of the fast Hartley transform algorithm. Due to the properties of the discrete Hartley transform (DHT), the conventional transmission scheme can be streamlined. We demonstrate that asymmetrically clipping (AC) technique can also be applied to DHT-based OFDM; the signal can be transmitted without the need of a DC bias, resulting in a power-efficient system, not affected by clipping noise. Hermitian symmetry is not required for the input signal. Therefore, this technique supports the double of input symbols compared to both AC and DC-biased O-OFDM, based on standard Fourier processing. The analysis in an additive white Gaussian noise channel shows that the same performance can be achieved by replacing 4, 16, and 64 QAM (quadrature-amplitude modulation) AC optical-OFDM with a simpler system based on DHT, using binary phase-shift keying (BPSK), 4 and 8 PAM (pulse-amplitude modulation), respectively.

Journal ArticleDOI
TL;DR: Details of an experimental system designed to operate at 2400 MHz are presented and the results are compared to theoretical predictions.
Abstract: A two-element time-modulated array system is configured to operate as a direction finding antenna. The signal from each element of the array is time switched to provide a phase modulated output in which the depth of modulation is dependent on the angle of arrival of the received signal. Details of an experimental system designed to operate at 2400 MHz are presented and the results are compared to theoretical predictions.

Journal ArticleDOI
TL;DR: This study reports the first demonstration of a chip-scale, nanophotonic pulse compressor on silicon, operating by nonlinear spectral broadening from self-phase modulation in a nanowire waveguide, followed by temporal compression with an integrated dispersive element.
Abstract: Projected demands in information bandwidth have resulted in a paradigm shift from electrical to optical interconnects. Switches, modulators and wavelength converters have all been demonstrated on complementary metal-oxide semiconductor compatible platforms, and are important for all optical signal and information processing. Similarly, pulse compression is crucial for creating short pulses necessary for key applications in high-capacity communications, imaging and spectroscopy. In this study, we report the first demonstration of a chip-scale, nanophotonic pulse compressor on silicon, operating by nonlinear spectral broadening from self-phase modulation in a nanowire waveguide, followed by temporal compression with an integrated dispersive element. Using a low input peak power of 10 W, we achieve compression factors as high as 7 for 7 ps pulses. This compact and efficient device will enable ultrashort pulse sources to be integrated with systems level photonic circuits necessary for future optoelectronic networks.

Journal ArticleDOI
TL;DR: In this paper, the current-controlled modulation of a nanocontact spin-torque oscillator has been studied in three principally different cases of frequency nonlinearity (d(2)f/dI(dc)(2) being zero, positive, and negative).
Abstract: We study the current-controlled modulation of a nanocontact spin-torque oscillator. Three principally different cases of frequency nonlinearity (d(2)f/dI(dc)(2) being zero, positive, and negative) ...

Journal ArticleDOI
TL;DR: In this paper, the authors numerically analyze the characteristics of silicon-based microring modulators consisting of a single-ring resonator and show that cavity dynamics significantly affect the modulation properties.
Abstract: We numerically analyze the characteristics of silicon-based microring modulators consisting of a single-ring resonator. Performance of the devices as digital intensity modulators is examined in terms of extinction ratio, pulsewidth, frequency chirp, spectral broadening, and signal quality. Three types of the modulators built in single-waveguide under-/overcoupling and dual-waveguide configurations are discussed. We show that cavity dynamics significantly affect the modulation properties. Data transmission performance over single-mode fibers is also presented. A silicon microring modulator with negative chirp could achieve 0.8 dB power penalty in 80-km fiber transmission without dispersion compensation.

Journal ArticleDOI
TL;DR: A comparative system-level overview is given of alternative class-D amplifier architectures and topological alternatives such as open-loop versus feedback and fixed-carrier versus self-oscillating are analyzed and compared in terms of relevant characteristics.
Abstract: A comparative system-level overview is given of alternative class-D amplifier architectures. The theory behind pulsewidth modulation and different modulation schemes is discussed. Topological alternatives such as open-loop versus feedback and fixed-carrier versus self-oscillating are analyzed and compared in terms of relevant characteristics, such as distortion, power supply rejection, efficiency, and electromagnetic interference. The combination of digital-to-analog conversion and class-D amplifiers is discussed. Experimental results of an integrated circuit based on a simple architecture that combines the benefits of digital input with an analog feedback loop are presented.

Patent
22 Apr 2010
TL;DR: In this paper, a computing device-controlled system is described for the generation of amplitude-modulated pulsewidth modulation (AMPWM) signals for use in treating neurological dysfunction via cranial neurostimulation, where the AMPWM signal is specifically designed to minimize the electrical impedance of the tissues of the head.
Abstract: A computing device-controlled system is described for the generation of amplitude-modulated pulse-width modulation (AMPWM) signals for use in treating neurological dysfunction via cranial neurostimulation, where the AMPWM signal is specifically designed to minimize the electrical impedance of the tissues of the head. A low-frequency carrier signal is determined for the AMPWM signal by measuring EEG activity at a reference site or sites, generally corresponding with the location of suspected brain dysfunction. Carrier signal frequency is variably related to critical frequency components of the EEG power spectral density, determined from statistical analysis of amplitudes and variability, and dynamically changed as a function of time to prevent entrainment. The AMPWM signal is presented to a subject via a plurality of neurostimulation delivery modes for therapeutic use.

Journal ArticleDOI
TL;DR: A high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator using five optical ring resonators which are fully programmable using thermo-optical tuning.
Abstract: We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

Journal ArticleDOI
15 Nov 2010
TL;DR: In this article, Fourier analysis shows that interleaving the carriers in conventional uniform PWM significantly reduces the common-mode voltage, but the disadvantage of the proposed approach is an increase in current ripple at the switching frequency.
Abstract: Interleaving pulse width modulation (PWM) waveforms is a proven method to reduce ripple in dc-dc converters. The present study explores interleaving for three-phase motor drives. Fourier analysis shows that interleaving the carriers in conventional uniform PWM significantly reduces the common-mode voltage. New digital signal processor (DSP) hardware supports interleaving directly with changes to just two registers at setup time, so no additional computation time is needed during operation. The common-mode voltage reduction ranges from 36% at full modulation to 67% when idling with zero modulation. Third-harmonic injection slightly reduces the advantage (to 25% at full modulation). However, the maximum RMS common-mode voltage is still less than 20% of the bus voltage under all conditions. The disadvantage of the proposed approach is an increase in current ripple at the switching frequency. Simulations verify the findings. Experiments on a motor drive that uses a commercially available motor-control DSP, connected to a 5 hp motor, agree well with calculations and simulations.

Journal ArticleDOI
TL;DR: This work shows that the topology of an Arrayed Grating Waveguide Router (AWGR) can be used to perform the demultiplexing, and that the AWGR can be considered as a serial-to-parallel converter followed by a DFT.
Abstract: All-optical OFDM uses optical techniques to multiplex together several modulated lightsources, to form a band of subcarriers that can be considered as one wavelength channel. The subcarriers have a frequency separation equal to their modulation rate. This means that they can be demultiplexed without any cross-talk between them, usually with a Discrete Fourier Transform (DFT), implemented optically or electronically. Previous work has proposed networks of optical couplers to implement the DFT. This work shows that the topology of an Arrayed Grating Waveguide Router (AWGR) can be used to perform the demultiplexing, and that the AWGR can be considered as a serial-to-parallel converter followed by a DFT. The simulations show that the electrical bandwidths of the transmitter and receiver are critical to orthogonal demultiplexing, and give insight into how crosstalk occurs in all-optical OFDM and coherent-WDM systems using waveforms and spectra along the system. Design specifications for the AWGR are developed, and show that non-uniformity will lead to crosstalk. The compensation of dispersion and the applications of these techniques to ‘coherent WDM’ systems using Non-Return to Zero modulation is discussed.

Journal ArticleDOI
TL;DR: The proposed algorithm for automatic digital modulation recognition is verified using higher-order statistical moments (HOM) of continuous wavelet transform (CWT) as a features set and a multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier.
Abstract: Modulation type is one of the most important characteristics used in signal waveform identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified using higher-order statistical moments (HOM) of continuous wavelet transform (CWT) as a features set. A multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier. The purpose is to discriminate among different M-ary shift keying modulation schemes and themodulation order without any priori signal information. Pre-processing and features subset selection using principal component analysis is used to reduce the network complexity and to improve the classifier's performance. The proposed algorithm is evaluated through confusion matrix and false recognition probability. The proposed classifier is shown to be capable of recognizing the modulation scheme with high accuracy over wide signal-to-noise ratio (SNR) range over both additive white Gaussian noise (AWGN) and different fading channels.