scispace - formally typeset
Search or ask a question
Topic

Modulation

About: Modulation is a research topic. Over the lifetime, 56045 publications have been published within this topic receiving 578873 citations.


Papers
More filters
Journal ArticleDOI
B. Saltzberg1
TL;DR: A parallel quadrature AM data transmission system with a number of overlapping channels, each carrying a signaling rateb, spacedb/2apart in frequency appears to be a promising technique for achieving good performance at high information rates over bandlimited dispersive transmission media.
Abstract: A parallel quadrature AM data transmission system may be implemented with a number of overlapping channels, each carrying a signaling rate b , spaced b/2 apart in frequency. When a large number of channels are used, the system allows transmission speeds very close to the Nyquist rate, with little sensitivity to delay and amplitude distortion of the transmission medium. The receiver requires precise phasing of the demodulating carriers and sampling times in order to keep crosstalk between channels small. In the presence of delay and amplitude distortion, better results are obtained when half cosine roll-offs are used for shaping each channel than for full cosine roll-off. This transmission scheme appears to be a promising technique for achieving good performance at high information rates over bandlimited dispersive transmission media.

972 citations

Journal ArticleDOI
TL;DR: This work proposes a general approach to differential modulation for multiple transmit antennas based on group codes, which can be applied to any number of transmit and receive antennas, and any signal constellation, and can be demodulated with or without channel estimates.
Abstract: Space-time coding and modulation exploit the presence of multiple transmit antennas to improve the performance on multipath radio channels Thus far, most work on space-time coding has assumed that perfect channel estimates are available at the receiver In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider the design of modulation techniques that do not require channel estimates at the transmitter or receiver We propose a general approach to differential modulation for multiple transmit antennas based on group codes This approach ran be applied to any number of transmit and receive antennas, and any signal constellation We also derive low-complexity differential receivers, error bounds, and modulator design criteria, which we use to construct optimal differential modulation schemes for two transmit antennas These schemes can be demodulated with or without channel estimates This permits the receiver to exploit channel estimates when they are available The performance degrades by approximately 3 dB when estimates are not available

944 citations

Journal ArticleDOI
TL;DR: A scheme for achieving high-speed operation for carrier-injection based silicon electro-optical modulator, which is optimized for small size and high modulation depth is shown.
Abstract: We show a scheme for achieving high-speed operation for carrier-injection based silicon electro-optical modulator, which is optimized for small size and high modulation depth. The performance of the device is analyzed theoretically and a 12.5-Gbit/s modulation with high extinction ratio >9dB is demonstrated experimentally using a silicon micro-ring modulator.

930 citations

Journal ArticleDOI
TL;DR: This work reviews detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method, and compares modulation methods encoding information in various degrees of freedom (DOF).
Abstract: The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

907 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a space vector modulated three-phase-to-three-phase matrix converter with input power factor correction, which is theoretically derived from the desired average transfer functions, using the indirect transfer function approach.
Abstract: Analysis, design, and implementation of the space vector modulated three-phase to three-phase matrix converter with input power factor correction are presented. The majority of published research results on the matrix converter control are given an overview, and the one which employs simultaneous output-voltage and input-current space vector modulation, is systematically reviewed. The modulation algorithm is theoretically derived from the desired average transfer functions, using the indirect transfer function approach. The algorithm is verified through implementation of a 2 kVA experimental matrix converter driving a standard induction motor as a load. The switching frequency is 20 kHz. The modulator is implemented with a digital signal processor. The resultant output voltages and input currents are sinusoidal, practically without low-frequency harmonics. The input power factor is above 0.99 in the whole operating range.

891 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
91% related
Optical fiber
167K papers, 1.8M citations
90% related
Voltage
296.3K papers, 1.7M citations
85% related
Communication channel
137.4K papers, 1.7M citations
84% related
Capacitor
166.6K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202224
20211,656
20202,400
20192,744
20182,717
20172,449