Topic
Molecular beam
About: Molecular beam is a research topic. Over the lifetime, 5906 publications have been published within this topic receiving 121432 citations.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
01 Jan 1969
TL;DR: In this paper, the authors present a simulation of a free jet expansion of a high-energy scattering of molecular beams in the presence of high-temperature Viscosity cross sections.
Abstract: Collisional Processes.- Analytical Formulae for Cross Sections and Rate Constants of Elementary Processes in Gases.- Relaxation of Velocity Distribution of Electrons Cooled (Heated) By Rotational Excitation (De-Excitation) Of N2.- Effects of the Initial Molecular States in a High-Energy Scattering of Molecular Beams.- Differential Cross Sections for Ion-Pair Formation with Selection of the Exit Channel.- Low-temperature Viscosity Cross Sections Measured in a Supersonic Argon Beam II.- Excited Oxygen Iodine Kinetic Studies.- Determination of Antisymmetric Mode Energy of CO2 Injected into a Supersonic Nitrogen Flow.- Molecular Beams.- Where are we going with molecular beams?.- Cesium Vapor Jettarget Produced With a Supersonic Nozzle.- Basic Features of the Generation and Diagnostics of Atomic Hydrogen Beams in the Ground and Metastable 22S1/2-States to Determine the Fundamental Physical Constants.- Optical Pumping Of Metastable Neon Atoms in A Weak Magnetic Field.- CO2-Laser Excitation of a Molecular Beam Monitored By Spontaneous Raman Effect.- Time-of-Flight and Electron Beam Fluorescence Diagnostics: Optimal Experimental Designs.- Molecular Beam Time-of-Flight Measurements in A Nearly Freejet Expansion of High Temperature Gas Produced By a Shock Tube.- Electron Beam Diagnostics.- Electron-Beam Diagnostics of High Temperature Rarefied Gas Flows.- Excitation Models Used in the Electron Beam Fluorescence Technique.- Electron - Beam Diagnostics in Nitrogen Multiquantum Rotational Transitions.- Free Jets, Nonequilibrium Expansions.- Free Jet as an Object of Nonequilibrium Processes Investigation.- State Dependent Angular Distributions of Na2 Molecules in a Na/Na2 Free Jet Expansion.- Molecular Beam Time-of-Flight Measurements and Moment Method Calculations of Translational Relaxation in Highly Heated Free Jets of Monatomic Gas Mixtures.- Rovibrational State Population Distributions of CO (v ? 4, J ? 10) In Highly Heated Supersonic Free Jets of CO-N2 Mixtures.- Free Jet Expansion with A Strong Condensation Effect.- Measured Densities in UF6 Free Jets.- Rotational Relaxation of NO in Seeded, Pulsed Nozzle Beams.- The Free-Jet Expansion from a Capillary Source.- Rotational Relaxation in High Temperature Jets of Nitrogen.- Translational Nonequilibrium in a Free Jet Expansion of a Binary Gas Mixture.- Laser Induced Fluorescence Study of Free Jet Expansions.- Jet-Surface Interactions.- Experimental Study of Plume Impingement and Heating Effect on Ariane's Payload.- The Interaction of a Jet Exhausting from a Body with a Supersonic Free Flow of a Rarefied Gas.- Modelling Control Thruster Plume Flow and Impingement.- Impingement of a Supersonic, Underexpanded Rarefied Jet upon a Flat Plate.- Some Peculiarities of Power and Heat Interaction of a Low Density Highly Underexpanded Jet with a Flat Plate.- Condensation in Flows.- Nonequilibrium Condensation in Free Jets.- Condensation and Vapour-Liquid Interaction in a Reflected Shock Region.- Homogeneous and Heterogeneous Condensation of Nitrogen in Transonic Flow.- Investigation of Nonequilibrium Homogeneous Gas Condensation.- The Peculiarities of Condensation Process in Conical Nozzle and in Free Jet Behind it.- Investigation of Nonequilibrium Argon Condensation In Supersonic Jet By Mass-Spectrometry, Electron Diffraction and VUV Emission Spectroscopy.- Clusters and Nucleation Kinetics.- The Microscopic Theory of Clustering and Nucleation.- Kinetics of Cluster Formation and Growth in the Process of Isothermal Condensation.- Relaxation Processes in a Molecular Dynamic Model of Cluster from the Lennard-Jones Particles.- Quantum-Chemical Study Of Processes With Cluster Isomerism.- The Homogeneous Nucleation at the Continuously Changing Temperature and Vapour Concentration.- Molecular Clusters as Heterogeneous Condensation Nuclei.- Experiments with Clusters.- The Photochemistry of Small van der Waals Molecules as Studied by Laser Spectroscopy in Supersonic Free Jets.- Diagnostics of Clusters in Molecular Beams.- Experimental Studies of Water-Aerosol Explosive Vaporization.- Laser Probing of Cluster Formation and Dissociation in Molecular Beams.- Free Molecule Drag on Helium Clusters.- Vibrational Relaxation Kinetics in a Two-Phase Gas-Cluster System.- Gas-Particle Flows.- Long-Range Attraction in the Collisions of Free-Molecular and Transition Regime Aerosol Particles.- Nonequilibrium Statistical Theory of Dispersed Systems.- The Mechanism of Strong Electric Field Effect on the Dispersed Media in the Rarefied Gas.- Generation of High-Speed Aerosol Beams By Laval Nozzles.- Kinetic Model of a Gas Suspension.- Gas Mixtures.- Kinetic Phenomena in the Rarefied Gas Mixtures Flowing Through Channels.- On the Discrete Boltzmann Equation for Binary Gas Mixtures.- Peculiarities and Applicability Conditions of Macroscopic Description of Disparate Molecular Masses Mixture Motion.- Numerical Solution of the Boltzmann Kinetic Equation for the Binary Gas Mixture.- Species Isotope Separation.- Gas or Isotope Separation by Injection into Light Gas Flow.- Molecular Diffusion Through a Fine-Pored Filter Versus Resonante IR-Radiation Intensity.- On Limiting Situations of Gas Dynamic Separation.- A Study of Reverse Leaks.- Investigation of Nonequilibrium Effects in Separation Nozzles by Monte-Carlo Simulation.- Separation of Binary Gas Mixtures at their Effusion through a Capillary and a Nuclear Filler into Vacuum.- Ionized Gases.- Effects of Nonideality in Quantum Kinetic Theory.- Molecular Mass and Heat Transfer of Chemical Equilibrium Multicomponent Partially Ionized Gases in Electromagnetic Field.- Spectroscopic Study of a Plasma Flow along the Stagnation Streamline of a Blunt Body.- On Model Kinetic Operators and Corresponding Langevin Sources for a Non-Equilibrium Plasma.- Related Fields.- Rarefied Gas Dynamics as Related to Controlled Thermonuclear Fusion.- Vacuum Ejectors with Appreciably Uneven Flows in Channels at Low Reynolds Numbers.- Simulation of the Process of the Cosmic Body Formation.
2,747 citations
[...]
TL;DR: In this article, the authors demonstrate that definite mass/charge states can be formed by electrospraying a dilute polymer solution into an evaporation chamber, negative macroions can be produced and a molecular beam formed by sampling the gaseous mixture of macroions, solvent and nitrogen molecules with a nozzle-skimmer system of the Kantrowitz-Gray type.
Abstract: By means of electrospraying a dilute polymer solution into an evaporation chamber, negative macroions can be produced and a molecular beam formed by sampling the gaseous mixture of macroions, solvent, and nitrogen molecules with a nozzle‐skimmer system of the Kantrowitz–Gray type. The macroion current can be detected by a Faraday cage after the light ions have been repelled from the beam by negative voltages on a repeller grid. Theoretical repeller voltages which best agree with the observed are those calculated by assuming a macroion velocity within 2% of the estimated supersonic beam velocity of 743 m sec−1. Polystyrene macroions of 51 000 weight‐average amu tend to form dimers and trimers in the beam while larger polystyrene macroions of 411 000 weight‐average amu appear mostly to be multiply charged single species. The results demonstrate that definite mass/charge states can be formed by the electrospray technique, that a considerable monochromatization of macroion velocities in the beam takes place, and that the macroions become highly concentrated relative to low‐molecular‐weight solvent and nitrogen ions during the transit time in the supersonic beam.
1,532 citations
[...]
TL;DR: Molecular beam deflection measurements of small iron, cobalt, and nickel clusters show how magnetism develops as the cluster size is increased from several tens to several hundreds of atoms for temperatures between 80 and 1000 K.
Abstract: Molecular beam deflection measurements of small iron, cobalt, and nickel clusters show how magnetism develops as the cluster size is increased from several tens to several hundreds of atoms for temperatures between 80 and 1000 K. Ferromagnetism occurs even for the smallest sizes: for clusters with fewer than about 30 atoms the magnetic moments are atomlike; as the size is increased up to 700 atoms, the magnetic moments approach the bulk limit, with oscillations probably caused by surface-induced spin-density waves. The trends are explained in a magnetic shell model. A crystallographic phase transition from high moment to low moment in iron clusters has also been identified.
851 citations
[...]
TL;DR: In this paper, a new molecular beam resonance method using separated oscillating fields at the incident and emergent ends of the homogeneous field region is theoretically investigated and an expression is obtained for the quantum mechanical transition probability of a system between two states when the system is subjected to such separated oscillators.
Abstract: A new molecular beam resonance method using separated oscillating fields at the incident and emergent ends of the homogeneous field region is theoretically investigated in this paper. An expression is obtained for the quantum mechanical transition probability of a system between two states when the system is subjected to such separated oscillating fields. This is numerically averaged over the molecular velocity distribution and provides the theoretical shape of the resonance curves. It is found that resonances with such a technique have a theoretical half-width only 0.6 as great as those by conventional molecular beam resonance methods. In addition to producing sharper resonance minima, the new method has its resonances much less broadened by inhomogeneities of the fixed field, it makes possible resonance experiments in regions into which an oscillating field cannot be introduced, and it is more convenient and effective with short wave-length radiation.
788 citations
[...]
TL;DR: In this paper, the authors used electric resonance spectroscopy (ES) to study hydrogen-bonded water dimers, generated in a supersonic nozzle, and found that the resulting structure is consistent with a linear hydrogen bond and the proton acceptor tetrahedrally oriented to the hydrogen bond.
Abstract: Molecular beams of hydrogen bonded water dimer, generated in a supersonic nozzle, have been studied using electric resonance spectroscopy. Radiofrequency and microwave transitions have been observed in (H2 16O)2, (D2 16O)2, and (H2 18O)2. Transitions arising from both pure rotation and rotation–tunneling occur. The pure rotational transitions have been fit to a rigid rotor model to obtain structural information. Information on the relative orientation of the two monomer units is also contained in the electric dipole moment component along the A inertial axis μa, which is obtained from Stark effect measurements. The resultant structure is that of a ’’trans‐linear’’ complex with an oxygen–oxygen distance ROO of 2.98(1) A, the proton accepting water axis is 58(6) ° with respect to ROO, and the proton donating water axis at −51(6) ° with respect to ROO. This structure is consistent with a linear hydrogen bond and the proton acceptor tetrahedrally oriented to the hydrogen bond. The limits of uncertainty are wh...
646 citations