scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Journal ArticleDOI
05 Mar 2022-Heredity
TL;DR: In this article , a review of the molecular mechanisms for salinity stress tolerance, recent progress in mapping and introgressing major gene/QTL (genomics), transcriptomics, proteomics, and metabolomics in major cereals, viz., rice, wheat and maize, is presented.
Abstract: Salinity stress adversely affects plant growth and causes considerable losses in cereal crops. Salinity stress tolerance is a complex phenomenon, imparted by the interaction of compounds involved in various biochemical and physiological processes. Conventional breeding for salt stress tolerance has had limited success. However, the availability of molecular marker-based high-density linkage maps in the last two decades boosted genomics-based quantitative trait loci (QTL) mapping and QTL-seq approaches for fine mapping important major QTL for salinity stress tolerance in rice, wheat, and maize. For example, in rice, 'Saltol' QTL was successfully introgressed for tolerance to salt stress, particularly at the seedling stage. Transcriptomics, proteomics and metabolomics also offer opportunities to decipher and understand the molecular basis of stress tolerance. The use of proteomics and metabolomics-based metabolite markers can serve as an efficient selection tool as a substitute for phenotype-based selection. This review covers the molecular mechanisms for salinity stress tolerance, recent progress in mapping and introgressing major gene/QTL (genomics), transcriptomics, proteomics, and metabolomics in major cereals, viz., rice, wheat and maize.

21 citations

Journal ArticleDOI
Kathleen D'halluin1, Rene Ruiter
TL;DR: Different approaches for directed genome engineering with the emphasis on double strand break (DSB)-mediated engineering to-wards genome optimization for crop improvement and towards the acceleration of functional genomics are reviewed.
Abstract: The ability to develop nucleases with tailor-made activities for targeted DNA double-strand break induction at will at any desired position in the genome has been a major breakthrough to make targeted genome optimization feasible in plants. The development of site specific nucleases for precise genome modification has expanded the repertoire of tools for the development and optimization of traits, already including mutation breeding, molecular breeding and transgenesis.Through directed genome engineering technology, the huge amount of information provided by genomics and systems biology can now more effectively be used for the creation of plants with improved or new traits, and for the dissection of gene functions. Although still in an early phase of deployment, its utility has been demonstrated for engineering disease resistance, herbicide tolerance, altered metabolite profiles, and for molecular trait stacking to allow linked transmis-sion of transgenes. In this article, we will briefly review the different approaches for directed genome engineering with the emphasis on double strand break (DSB)-mediated engineering to-wards genome optimization for crop improvement and towards the acceleration of functional genomics.

21 citations

Journal ArticleDOI
TL;DR: It is confirmed that paclobutrazol inhibited plant height and leaf size in Lilium Longiflorum-Asiatic hybrid, and then RNA-Seq technique was employed to analyze gene transcripts of Lilium LONG-ASIatic hybrid leaves to get a deeper insight into dwarfism mechanism of lily.
Abstract: As a popular ornamental flower, potted lily is an important object of lily breeding. Paclobutrazol, a chemical growth retardation compound, is often used to dwarf plant in producing potted lilies. However, in recent years, the plants with inherited dwarf traits by using genetic engineer breeding technology are being developed. The studies on molecular basis of lily dwarfism will offer some target genes which have profound dwarf effect for genetic engineer breeding. Here, we confirmed that paclobutrazol inhibited plant height and leaf size in Lilium Longiflorum-Asiatic hybrid, and then RNA-Seq technique was employed to analyze gene transcripts of Lilium Longiflorum-Asiatic hybrid leaves by paclobutrazol treatment in order to get a deeper insight into dwarfism mechanism of lily. Approximately 38.6 Gb data was obtained and assemble into 53,681 unigenes. Annotation, pathways, functional classification and phylogenetic classification of these data were analyzed based on Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. 2704 differentially expressed genes were screened by comparing paclobutrazol-treated samples with untreated samples and quantitative real-time PCR was performed to validate expression profiles. By analyzing dynamic changes of differentially expressed genes, nine metabolic pathways and signal transduction pathways were significantly enriched and many potentially interesting genes were identified that encoded putative regulators or key components of cell division, cell expansion, GA metabolism and signaling transduction and these genes were highlighted to reveal their importance in regulation of plant size. These results will provide a better understanding of the molecular mechanism on lily dwarfism and some potential genes related to lily organ size, which will lay the foundation for molecular breeding of potted lilies. These transcriptome data will also serve as valuable public genomic resources for other genetic research in lily.

21 citations

Journal ArticleDOI
TL;DR: It is suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used.
Abstract: Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.

21 citations

Journal ArticleDOI
TL;DR: This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.
Abstract: Vegetable crops are major nutrient sources for humanity and have been well-cultivated since thousands of years of domestication. With the rapid development of next-generation sequencing and high-throughput genotyping technologies, the reference genome of more than 20 vegetables have been well-assembled and published. Resequencing approaches on large-scale germplasm resources have clarified the domestication and improvement of vegetable crops by human selection; its application on genetic mapping and quantitative trait locus analysis has led to the discovery of key genes and molecular markers linked to important traits in vegetables. Moreover, genome-based breeding has been utilized in many vegetable crops, including Solanaceae, Cucurbitaceae, Cruciferae, and other families, thereby promoting molecular breeding at a single-nucleotide level. Thus, genome-wide SNP markers have been widely used, and high-throughput genotyping techniques have become one of the most essential methods in vegetable breeding. With the popularization of gene editing technology research on vegetable crops, breeding efficiency can be rapidly increased, especially by combining the genomic and variomic information of vegetable crops. This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.

21 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137