scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The progress made, limitations encountered and future possibilities for the application of marker-assisted selection in the genetic improvement of pulse crops are reviewed.
Abstract: With 2 figures and 2 tables Abstract Pulses are important sources of proteins in vegetarian diet. However, genetic improvement in production and productivity of pulse crops has been very slow owing to several constraints. The present view of researchers is that the effectiveness and efficiency of conventional breeding can be significantly improved by using molecular markers. Nowadays, molecular markers are routinely utilized worldwide in all major crops as a component of breeding. The pace of development of molecular markers and other genomic sources has been accelerated in chickpea, pigeon pea and some other pulses, and marker–trait associations have been established for a number of important agronomic traits. The efforts are underway to use high-throughput genotyping platforms besides developing more genomic resources in other pulses. So far, progress in the use of marker-assisted selection as a part of pulse breeding programmes has been very slow and limited to few pulse crops such as chickpea and common bean. In this article, we have reviewed the progress made, limitations encountered and future possibilities for the application of marker-assisted selection in the genetic improvement of pulse crops.

159 citations

Journal ArticleDOI
TL;DR: DArT markers for Sorghum bicolor are successfully developed and it is demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps.
Abstract: The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. A genotyping array was developed representing approximately 12,000 genomic clones using Pst I+Ban II complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.

157 citations

Journal ArticleDOI
TL;DR: It is suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.
Abstract: Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.

153 citations

Book
01 Jan 1978
TL;DR: This paper will concern you to try reading maize breeding and genetics as one of the reading material to finish quickly to increase the knowledge.
Abstract: Feel lonely? What about reading books? Book is one of the greatest friends to accompany while in your lonely time. When you have no friends and activities somewhere and sometimes, reading book can be a great choice. This is not only for spending the time, it will increase the knowledge. Of course the b=benefits to take will relate to what kind of book that you are reading. And now, we will concern you to try reading maize breeding and genetics as one of the reading material to finish quickly.

152 citations

Journal ArticleDOI
TL;DR: While BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the Genetic map with a future physical map as well as for molecular breeding in pigeonpea.
Abstract: Background: Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. Results: A set of 88,860 BAC (bacterial artificial chromosomes)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52 K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. Conclusion: In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea

152 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137