scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: P CYP19A1 could be used as a candidate molecular marker in breeding aimed at rapid improvement of the reproductive characteristics of pigs and is expected to generate economic benefits via progress in pig breeding.

6 citations

Book ChapterDOI
01 Jan 2014
TL;DR: In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomassproduction, and molecular breeding for improving these traits are discussed.
Abstract: New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

6 citations

Journal Article
TL;DR: Dissimilarity coefficient of the generated information obtained on genetic relatedness would be supportive in further rice breeding program and marker-assisted backcrossing accelerate, the transfer of gene of interest in desirable genetic background are accelerated.
Abstract: Molecular breeding plays an important role in sustainable agriculture development. Hybrid rice technology aims to increase the yield potential of rice beyond the level of inbred high-yielding varieties (HYVs) by exploiting the phenomenon of hybrid vigour or heterosis. Improvement of hybrid rice parental line is necessary to meet the food security problem. Parental polymorphism was carried with 215 SSR markers between five recurrents and ten donors. During the foreground selection, both reported markers (S5-Indel and BF-S5) were validated for wide compatibility, 2 out of 14 (ART5 and SC3) validates for submergence tolerance, one out of two (RM5) validate for stigma exsertion, whereas 2 of 3 markers (RM5970, RM3476) validated for elongated uppermost internode traits between recurrents and donors. For background selection, maximum polymorphic markers (112) between IR58025eB i.e improved maintainer line with elongated uppermost internode and Oryza meridionalis and minimum polymorphic markers (42) between IR79156B and IR91-1591-3 were found. Marker-assisted backcrossing accelerate, the transfer of gene of interest in desirable genetic background. Genotypes IR58025B and IR58025eB emerged as genetically most similar with a value of 97%. The genotypes IR64 Sub1 and Oryza meridionalis were found most divergent showing 33% genetic similarity. Dissimilarity coefficient of the generated information obtained on genetic relatedness would be supportive in further rice breeding program.

6 citations

Journal ArticleDOI
01 Feb 2010
TL;DR: Starting from a historical perspective, the benefits and drawbacks of the use of molecular markers for the breeding of ornamentals are brought forward and guidelines are being formulated to come to a structured introduction of Molecular markers for a specific breeding objective.
Abstract: In the past 20 years the use of molecular markers has gradually expanded from the field of scientific genetic analysis towards the implementation in commercial breeding programs. Starting from a historical perspective, the benefits and drawbacks of the use of molecular markers for the breeding of ornamentals are brought forward. Important questions to be handled before starting a molecular breeding effort are addressed. Guidelines are being formulated to come to a structured introduction of molecular markers for a specific breeding objective. Examples from rose breeding are used to illustrate the feasibility of molecular breeding approaches.

6 citations

Book ChapterDOI
01 Jan 2012
TL;DR: This chapter deals with the latest results and conclusions of yield losses in plant pathology, entomology and weed science, and successful application of breeding approaches to limiting such yield reductions, and examines the knowledge available in breeding and control of biotic stress damage.
Abstract: Modern agriculture is concerned with the production of crops used primarily for human and animal food, but in so doing there is often the need (in some cases by law) to protect the environment. In crop production there is also the need to lower production costs, and especially reduce the use of expensive pesticides and fertilizers. It is often an important aim, which is not always fulfilled to apply fertilizers and pesticides only when needed, but in order for this strategy to succeed, a better understanding of biotic stress and associated influences from plant breeding achievements is required. Therefore the impact of biotic stress and injury to plants and plant yield is not only of economic importance to agriculture but is directly related to other biological and environmental questions. For example, biological and economic decision made over the control of biotic stress forms an important part of Integrated Pest Management (IPM). In this chapter, we deal with the latest results and conclusions of yield losses in plant pathology, entomology and weed science, and successful application of breeding approaches to limiting such yield reductions. We intend to cover all biological classes of biotic stressors, and plant breeding methods commonly used for the diversity of organisms involved. It will focus on current knowledge of yield and fitness loss in agricultural ecosystems, and improved approaches in order that crops can better tolerate these biotic factors. Therefore in the first part of the chapter we intend to cover agricultural crops, production and limitations, conventional and molecular breeding, and where DNA-based molecular markers have been used with advantages over traditional phenotype trait selection. Molecular markers can be used to tag biotic resistance genes, and they can serve for improvement of the efficiency of selection in plant breeding, by so called marker assisted selection (MAS). The potential benefits of MAS are discussed, especially with the use of MAS to overcome some of the problems faced by classical phenotypic screening approaches in conventional plant breeding programs. In the second part of the chapter we intend to discuss biotic stress within the context of each biological class of organisms involved in crop losses, and attempt to evaluate the knowledge available in breeding and control of biotic stress damage. Abiotic stress (dealt with elsewhere in the book) will be mentioned from time to time and we certainly make a strong argument for an integrated approach to these two types of stresses in agriculture whenever possible.

6 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137