scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Posted ContentDOI
02 Jul 2018-bioRxiv
TL;DR: This work constructs an integrated U. decumbens genetic map for a full-sibling progeny using GBS-based markers with allele dosage information, detects QTLs for resistance to spittlebug, an important pasture insect pest, and seeks putative candidate genes involved in resistance/defense against pathogens.
Abstract: Urochloa decumbens (Stapf) R.D. Webster is one of the most important African forage grasses in Brazilian beef production. Currently available genetic-genomic resources for this species are restricted mainly due to polyploidy and apomixis. Therefore, crucial genomic-molecular studies such as the construction of genetic maps and the mapping of quantitative trait loci (QTLs) are very challenging and consequently affect the advancement of molecular breeding. The objectives of this work were to (i) construct an integrated U. decumbens genetic map for a full-sibling progeny using GBS-based markers with allele dosage information, (ii) detect QTLs for spittlebug (Notozulia entreriana) resistance, and (iii) seek putative candidate genes involved in resistance/defense against pathogens. We used the Setaria viridis genome as reference to align GBS reads and selected 4,240 high-quality SNPs markers with allele dosage information. Of these markers, 1,000 were distributed throughout nine homologous groups with a cumulative map length of 1,335.09 cM and an average marker density of 1.33 cM. We detected QTLs for resistance to spittlebug, an important pasture insect pest, that explained between 4.66% and 6.24% of the phenotypic variation. These QTLs are in regions containing putative candidate genes related to resistance/defense against pathogens. Because this is the first genetic map with SNP autotetraploid dosage data and QTL detection in U. decumbens, it will be useful for future evolutionary studies, genome assembly, and other QTL analyses in Urochloa spp. Moreover, the results might facilitate the isolation of spittlebug-related candidate genes and help clarify the mechanism of spittlebug resistance. These approaches will improve selection efficiency and accuracy in U. decumbens molecular breeding and shorten the breeding cycle.

6 citations

Book ChapterDOI
01 Jan 2018
TL;DR: Genes that have been selected for increased yield have now been identified at the molecular level such as IDEAL PLANT ARCHITECTURE1 (IPA1), Grain size 3 (GS3), and GRAIN NUMBER, PLANT HEIGHT, and HEADing date 7 (GHD7) helping to understand the molecular basis of plant architecture.
Abstract: Shoot architecture in rice is determined by the number of leaves, stems, and panicles and by their size, shape, and position on the plant. These factors determine the effectiveness of light interception, the degree of competition between neighboring plants, and ultimately the number and mass of grains produced. Plant hormones including auxin, cytokinins, gibberellins, strigolactones, and brassinosteroids play key roles in regulating shoot development and architecture. The SEMI-DWARF1 (SD1) gene has contributed greatly to rice yields by redirecting resources from elongation growth to panicle development, providing resistance to lodging and increased harvest index. The mechanism of control of tillering by strigolactone signaling has been determined in recent years providing valuable information to help understand the timing and number of tillers produced. Genes that have been selected for increased yield have now been identified at the molecular level such as IDEAL PLANT ARCHITECTURE1 (IPA1), Grain size 3 (GS3), and GRAIN NUMBER, PLANT HEIGHT, AND HEADING DATE 7 (GHD7). The function of these genes in controlling gene transcription and shoot development is helping us to understand the molecular basis of plant architecture. The future offers great potential for the rational design of plant architecture using molecular breeding techniques.

6 citations

Journal ArticleDOI

6 citations

Book ChapterDOI
01 Jan 2019
TL;DR: A road map to effectively combine the traditional and non-traditional methods for future Hevea breeding is presented and the progress of in vitro techniques comprehensively towards complementing conventional breeding is reviewed.
Abstract: The aim of Hevea breeding is to provide new varieties/clones which are genetically superior in terms of yield, disease tolerance, better adaptability to climatic fluctuations and good timber quality. Although traditional breeding strategies could achieve a substantial increase in yield, breaking the current yield plateau is possible only with the aid of nonconventional breeding strategies. In addition to large-scale propagation, tissue culture holds unique advantages for crop improvement and this has been utilized successfully in many crops for specific purposes. Various tissue-culture techniques like somatic embryogenesis, embryo rescue, culture of protoplast, anther, pollen and embryo sac are practiced in Hevea. Interventions were also made in the area of molecular breeding through the development of molecular markers and through Agrobacterium-mediated genetic manipulation. The present chapter gives an overview on the constraints in Hevea breeding and reviews the progress of in vitro techniques comprehensively towards complementing conventional breeding. A road map to effectively combine the traditional and non-traditional methods for future Hevea breeding is presented. This takes on importance in the present scenario of unprecedented climatic vagaries and resource constraints. Progress made in the advancement of biotechnological applications in the natural rubber-producing tree Hevea brasiliensis Muell. Arg. worldwide and its implications in breeding are described in detail.

6 citations

Journal ArticleDOI
TL;DR: Comparative genomics, transcriptomic analysis, and the genome-wide identification and analysis of useful genes as well as development of molecular marker for valuable traits could provide novel insights into fruit quality and the responses to diseases and stresses, and can be used as important information in molecular breeding programs for grape development.
Abstract: Grape is one of the important fruit crops around the world, and exposed to disease and pests, and internal or environmental stresses in the vineyards. Breeding and cultivation of new varieties of high quality-grapes resistant to diseases and pests and tolerant to stresses are the most important steps in the grape production. However, conventional breeding has laborious and time-consuming procedures in maintaining and selecting seedlings in the fields. Development of molecular breeding technology through understanding of molecular mechanism of useful traits can be used as an alternative strategy to improve the efficiency of grape breeding program by cross hybridization in grape development programs. The completion of the grape genome sequencing project provided the way to discover the novel genes and to analyze their functions. Comparative genomics, transcriptomic analysis, and the genome-wide identification and analysis of useful genes as well as development of molecular marker for valuable traits could provide novel insights into fruit quality and the responses to diseases and stresses, and can be used as important information in molecular breeding programs for grape development.

6 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137