scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new resource for the common bean community, a SNP genotyping platform, a large SNP data set and a number of applications on how to utilize this information to improve the efficiency and quality of seed handling activities, breeding, and seed dissemination through molecular tools are presented.
Abstract: Common bean (Phaseolus vulgaris L.) is an important staple crop for smallholder farmers, particularly in Eastern and Southern Africa. To support common bean breeding and seed dissemination, a high throughput SNP genotyping platform with 1500 established SNP assays has been developed at a genotyping service provider which allows breeders without their own genotyping infrastructure to outsource such service. A set of 708 genotypes mainly composed of germplasm from African breeders and CIAT breeding program were assembled and genotyped with over 800 SNPs. Diversity analysis revealed that both Mesoamerican and Andean gene pools are in use, with an emphasis on large seeded Andean genotypes, which represents the known regional preferences. The analysis of genetic similarities among germplasm entries revealed duplicated lines with different names as well as distinct SNP patterns in identically named samples. Overall, a worrying number of inconsistencies was identified in this data set of very diverse origins. This exemplifies the necessity to develop and use a cost-effective fingerprinting platform to ensure germplasm purity for research, sharing and seed dissemination. The genetic data also allows to visualize introgressions, to identify heterozygous regions to evaluate hybridization success and to employ marker-assisted selection. This study presents a new resource for the common bean community, a SNP genotyping platform, a large SNP data set and a number of applications on how to utilize this information to improve the efficiency and quality of seed handling activities, breeding, and seed dissemination through molecular tools.

34 citations

Journal ArticleDOI
TL;DR: This study establishes an important platform for rice gene functional research and rice molecular breeding by genomic selection by establishing a comprehensive SNP and InDel sub-database for the Rice Functional Genomics-based Breeding (RFGB) Database.
Abstract: Rice is an important food crop worldwide. Genomic research on global germplasm has theoretical and practical significances in the mining of favorable alleles and on genome-based molecular breeding, which are related to Chinese and global food security. Through the 3000 (3K) Rice Genome Project, we collected single nucleotide polymorphism (SNP) and insertion and deletion (InDel) genomic variation data for the 2859 rice genomes, and establish a comprehensive SNP and InDel sub-database for the Rice Functional Genomics-based Breeding (RFGB) Database. This sub-database is a global resource containing a polymorphism information retrieval function, a genome browser visualization system and a data export system for specific genomic regions, along with other tools. This study establishes an important platform for rice gene functional research and rice molecular breeding by genomic selection.

34 citations

Book ChapterDOI
A. C. Soh, G. Wong, T. Y. Hor, C. C. Tan, P. S. Chew 

34 citations

Book ChapterDOI
01 Jan 2019
TL;DR: Various conventional and molecular approaches to breeding, improving, and integrating multiple traits into a single genetic background with relevance to lentil crops are discussed.
Abstract: Plant breeders are often interested in improving several quantitative traits including yield, quality, and resistance to both biotic and abiotic stresses simultaneously. However, breeding for multiple traits together is challenging and largely depends on the choice of germplasm, and the genetics and genetic relationships among the traits under selection. Both conventional and molecular breeding approaches have been used to breed for multiple traits simultaneously. Several selection schemes including independent culling levels, tandem selection, and index selection have been developed and used to improve and integrate traits simultaneously. Of these, selection index was preferred in the past and has been used to improve the overall genotypic performance based simultaneously on several quantitative traits, even for traits with unfavorable associations. With the recent development and advancement in molecular marker technologies, molecular breeding has become preferred for targeted breeding and product development. Molecular breeding technologies including marker-assisted selection, marker-assisted backcrossing, marker-assisted recurrent selection, gene pyramiding, marker-assisted backcross gene pyramiding, and genomic selection have been used to introgress single or multiple genes. Multiple trait selection using selection indices based on information from both phenotypes and markers distributed across the whole genome has recently been practiced in various crops. Multiple trait selection is a realistic approach that can be exploited in lentil breeding programs to simultaneously improve multiple traits. In this chapter, we discuss various conventional and molecular approaches to breeding, improving, and integrating multiple traits into a single genetic background with relevance to lentil crops.

34 citations

Journal ArticleDOI
TL;DR: The significance of the 2NvS segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement.
Abstract: The first cytological characterization of the 2NvS segment in hexaploid wheat; complete de novo assembly and annotation of 2NvS segment; 2NvS frequency is increasing 2NvS and is associated with higher yield. The Aegilops ventricosa 2NvS translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2NvS segment in two wheat varieties, ‘Jagger’ and ‘CDC Stanley,’ and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2NvS region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2NvS among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2NvS on wheat grain yield based on historical datasets. The significance of the 2NvS segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement.

34 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137