scispace - formally typeset
Search or ask a question
Topic

Molecular breeding

About: Molecular breeding is a research topic. Over the lifetime, 2120 publications have been published within this topic receiving 56908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The heart of this review is the emphasis on the performance of various molecular genetic markers in diversity studies in relation to definite approaches that are in practice since several years allied with the multifaceted wheat molecular breeding and its polyploid nature.
Abstract: Wheat (Triticum spp.) is a universally lucrative agricultural crop. An increase in wheat production has been shown through selection by the farmers which can increase the grain profitability. The determination of genetic associations among domestic cultivars is facilitated by molecular markers. Data on genetic polymorphism is valuable for the germplasm association and regarding the developing management strategies. The information would be supportive for potential genome mapping programs and for the relevance of intellectual property rights of wheat breeders. Present review is an effort for providing support information to wheat breeders to develop varieties with varied genetic environment to attain continuity in large-scale wheat production. In this review, we have tried to provide a collective depiction of relevant information about the usage of some commonly used markers in wheat. It may help researchers to find out the frequentness and application of different markers and compare their results. The manuscript may serve as a platform helping the intellectuals for the selection and modification of their marker system in wheat diversity analysis. The heart of this review is the emphasis on the performance of various molecular genetic markers in diversity studies in relation to definite approaches that are in practice since several years allied with the multifaceted wheat molecular breeding and its polyploid nature.

31 citations

Journal ArticleDOI
TL;DR: The starch metabolism genes with high expression levels will be sequenced in a wheat germplasm set to develop single nucleotide polymorphism markers for improvement of yield- and starch-related traits through molecular breeding approaches.
Abstract: In agricultural crops, seed growth is important for high grain yield. Starch contributes about 50–80 % of the dry weight of seed, and its quality affects both processing and nutrition quality. Despite the wider importance of starch metabolism, the genes involved have not been given much attention or exploited for their use in molecular breeding. Therefore, it is of great interest to analyze the expression of genes involved in starch metabolism for improvement of starch-related traits through molecular breeding. In this study, a quantitative gene expression analysis of 25 starch metabolism genes was conducted in three bread wheat (Triticum aestivum) genotypes differing in yield- and starch-related traits at five seed developmental stages, i.e., 7, 14, 21, 28, and 35 days after anthesis. Their sequences were physically mapped to chromosomes using the wheat genome sequence data through in silico analysis. Their expression data showed dynamic variation during seed development in wheat genotypes. The 25 genes were divided into four groups depending on their expression patterns during seed development. For example, one group was characterized by a high level of expression at early and middle stages as exhibited by different isoforms of starch synthases, starch-branching enzymes, isoamylase, and transcription factors (TaRSR1 and SPA). The enzymes of these genes are key factors in starch biosynthesis. The starch metabolism genes with high expression levels will be sequenced in a wheat germplasm set to develop single nucleotide polymorphism markers for improvement of yield- and starch-related traits through molecular breeding approaches.

31 citations

Journal ArticleDOI
TL;DR: The Coordinated Agricultural Projects, Barley CAP and Triticeae CAP coupled with international collaborations, are discussed in detail as examples of a collaborative approach to exploit diverse germplasm resources for barley improvement.
Abstract: Genetic variation is crucial for successful barley improvement. Genomic technologies are improving dramatically and are providing access to the genetic diversity within this important crop species. Diverse collections of barley germplasm are being assembled and mined via genome-wide association studies and the identified variation can be linked to the barley sequence assembly. Introgression of favorable alleles via marker-assisted selection is now faster and more efficient due to the availability of single nucleotide polymorphism platforms. High-throughput genotyping is also making genomic selection an essential tool in modern barley breeding. Contemporary plant breeders now benefit from publicly available user-friendly databases providing genotypic and phenotypic information on large numbers of barley accessions. These resources facilitate access to allelic variation. In this review we explore how the most recent genomics and molecular breeding advances are changing breeding practices. The Coordinated Agricultural Projects (CAPs), Barley CAP and Triticeae CAP coupled with international collaborations, are discussed in detail as examples of a collaborative approach to exploit diverse germplasm resources for barley improvement.

31 citations

Journal ArticleDOI
TL;DR: The focus of this article is to overview the current understanding of mechanisms regulating plants responses to drought, and the importance of high-throughput sequencing platforms in this thematic issue.
Abstract: Obtaining high plant yield is not always achievable in agricultural activity as it is determined by various factors, including cultivar quality, nutrient and water supplies, degree of infection by pathogens, natural calamities and soil conditions, which affect plant growth and development. More noticeably, sustainable plant productivity to provide sufficient food for the increasing human population has become a thorny issue to scientists in the era of unpredictable global climatic changes, appearance of more tremendous or multiple stresses, and land restriction for cultivation. Well-established agricultural management by agrotechnological means has shown no longer to be effective enough to confront with this challenge. Instead, in order to maximize the production, it is advisable to implement such practices in combination with biological applications. Nowadays, high technologies are widely adopted into agricultural production, biological diversity conservation and crop improvement. Wang et al. has nicely outlined the utilization of DNA-based technologies in this field. Among these are the applications of (i) DNA markers into cultivar identification, seed purity analysis, germplasm resource evaluation, heterosis prediction, genetic mapping, cloning and breeding; and (ii) gene expression data in supporting the description of crop phenology, the analytic comparison of crop growth under stress versus non-stress conditions, or the study of fertilizer effects. Besides, various purposes of using transgenic technologies in agriculture, such as generating cultivars with better product quality, better tolerance to biotic or abiotic stress, are also discussed in the review. One of the important highlights in this issue is the review of the benefits brought by high-throughput sequencing technology, which is also known as next-generation sequencing (NGS). It is not so difficult to recognize that its application has allowed us to carry out biological studies at much deeper level and larger scale. In their article, Onda and Mochida detailed how to use these technologies in fully characterizing the genetic diversity or multigenecity within a particular plant species. The authors discussed the constant innovation of sequencing platforms which has made sequencing technologies become more superior and more powerful than ever before. Additionally, the efforts result in not only further cut down of the sequencing cost and increase in the sequencing speed, but also improvement in sequencing accuracy and extended sequencing application to studies at both DNA and RNA levels. Such knowledge will help the scientists interpret, at least partially, how plants can adapt to various environmental conditions, or how different cultivars can respond differently to the same stress. Another article by Ong et al. also laid emphasis on the importance of various high-throughput sequencing platforms, thanks to which a large number of genomic databases supplied with detailed annotation and useful bioinformatics tools have been established to assist geneticists. Readers can find in this review the summary of available plant-specific genomic databases up-to-date and popular web-based resources that are relevant for comparative genomics, plant evolution and phylogenomics studies. These, along with other approaches, such as quantitative trait locus and genome-wide association study, will lay foundation for prediction and identification of genes or alleles responsible for valuable agronomic traits, contributing to the enhancement of plant productivity by genetic engineering approach. In this thematic issue, specific examples for crop improvement are also demonstrated. The first showcase is given by Nongpiur et al. who provided evidence that synergistic employment of genomics approaches and high-throughput gene expression methods have aided in dissecting the salinity-responsive signaling pathway, identifying genes involved in the stress response and selecting candidate genes for further characterization aimed at generating new cultivars with better salinity stress tolerance. This paper is also a good reference source for readers who wish to get an overview about the general process from gene prediction to validation by experiments, including the details on techniques and approaches used. Another demonstration is provided by Khan et al. whose interest is enhancement of drought tolerance in crops. The focus of this article is to overview our current understanding of mechanisms regulating plants responses to drought. Evaluation of plant performance to drought and production of new elite varieties with better drought tolerance on the basis of using phenotyping and genomics-assisted breeding are also well discussed. In addition to the topics of environmental stress tolerance in plants, current knowledge on improving biotic stress tolerance is also summarized in our issue. Current picture on crosstalk of signaling mechanisms in rice between its immune system and symbiosis with microorganisms is presented by Akamatsu et al. Rice responses to bacteria and fungi via interactions between the plant pattern recognition receptors and the molecular microbe-associated molecular patterns are described in detail and suggested as targets for manipulation in order to increase disease resistance in crops. On the other hand, Bouain et al. are concerned about nutrient deficiency; specifically, how plant root system develops under growing conditions with inadequate phosphate. The authors overviewed our current understanding of the low phosphate-responsive mechanisms in Arabidopsis model plant, which was gained by using a combination of various advanced methods, including high-througput phenotyping, system biology analysis and "omics" technologies. Stress management in plants is proposed to be also achievable by regulating activities of cyclic nucleotide-gated ion channels. As emphasized in the paper of Jha et al., the application of such channels is important in mediating cellular ion homeostasis and plant tolerance to both biotic and abiotic stresses. In summary, with recent progresses in biological and biotechnological areas, especially rapid development of advanced technologies in biological system modeling, functional genomics, computer-based analyzing tools, genetic engineering and molecular breeding, biological control and biotechnological applications in agriculture have brought about an extraordinary revolution and have been considered the most powerful approaches in maintaining or even increasing crop yield. Therefore, in this issue, we would like to introduce to the audience a collection of various strategies used for enhancing crop productivity, with the focus on advanced biological-biotechnological platforms in the post-genomics era.

31 citations


Network Information
Related Topics (5)
Quantitative trait locus
24K papers, 998.7K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
cDNA library
17.3K papers, 930.2K citations
81% related
Genetic variation
27.8K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022153
2021156
2020143
2019169
2018137