scispace - formally typeset
Topic

Molecular dynamics

About: Molecular dynamics is a(n) research topic. Over the lifetime, 22482 publication(s) have been published within this topic receiving 800625 citation(s). The topic is also known as: molecular dynamics.

...read more

Papers
More filters

Journal ArticleDOI
Abstract: We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases. This effective two-body force field is the successor to the Weiner et al. force field and was developed with some of the same philosophies, such as the use of a simple diagonal potential function and electrostatic potential fit atom centered charges. The need for a 10-12 function for representing hydrogen bonds is no longer necessary due to the improved performance of the new charge model and new van der Waals parameters. These new charges are determined using a 6-31G* basis set and restrained electrostatic potential (RESP) fitting and have been shown to reproduce interaction energies, free energies of solvation, and conformational energies of simple small molecules to a good degree of accuracy. Furthermore, the new RESP charges exhibit less variability as a function of the molecular conformation used in the charge determination. The new van der Waals parameters have been derived from liquid simulations and include hydrogen parameters which take into account the effects of any geminal electronegative atoms. The bonded parameters developed by Weiner et al. were modified as necessary to reproduce experimental vibrational frequencies and structures. Most of the simple dihedral parameters have been retained from Weiner et al., but a complex set of 4 and yj parameters which do a good job of reproducing the energies of the low-energy conformations of glycyl and alanyl dipeptides has been developed for the peptide backbone.

...read more

12,107 citations


Journal ArticleDOI
Abstract: A new molecular mechanics force field, the Universal force field (UFF), is described wherein the force field parameters are estimated using general rules based only on the element, its hybridization, and its connectivity. The force field functional forms, parameters, and generating formulas for the full periodic table are presented

...read more

6,761 citations


Book ChapterDOI
01 Jan 1981-
Abstract: For molecular dynamics simulations of hydrated proteins a simple yet reliable model for the intermolecular potential for water is required. Such a model must be an effective pair potential valid for liquid densities that takes average many-body interactions into account. We have developed a three-point charge model (on hydrogen and oxygen positions) with a Lennard-Jones 6–12 potential on the oxygen positions only. Parameters for the model were determined from 12 molecular dynamics runs covering the two-dimensional parameter space of charge and oxygen repulsion. Both potential energy and pressure were required to coincide with experimental values. The model has very satisfactory properties, is easily incorporated into protein-water potentials, and requires only 0.25 sec computertime per dynamics step (for 216 molecules) on a CRAY-1 computer.

...read more

5,043 citations


Journal ArticleDOI
Abstract: We present the development of a force field for simulation of nucleic acids and proteins. Our approach began by obtaining equilibrium bond lengths and angles from microwave, neutron diffraction, and prior molecular mechanical calculations, torsional constants from microwave, NMR, and molecular mechanical studies, nonbonded parameters from crystal packing calculations, and atomic charges from the fit of a partial charge model to electrostatic potentials calculated by ab initio quantum mechanical theory. The parameters were then refined with molecular mechanical studies on the structures and energies of model compounds. For nucleic acids, we focused on methyl ethyl ether, tetrahydrofuran, deoxyadenosine, dimethyl phosphate, 9-methylguanine-l-methylcytosine hydrogen-bonded complex, 9-methyladenine-l-methylthymine hydrogen-bonded complex, and 1,3-dimethyluracil base-stacked dimer. Bond, angle, torsional, nonbonded, and hydrogen-bond parameters were varied to optimize the agreement between calculated and experimental values for sugar pucker energies and structures, vibrational frequencies of dimethyl phosphate and tetrahydrofuran, and energies for base pairing and base stacking. For proteins, we focused on 4>,'lt maps of glycyl and alanyl dipeptides, hydrogen-bonding interactions involving the various protein polar groups, and energy refinement calculations on insulin. Unlike the models for hydrogen bonding involving nitrogen and oxygen electron donors, an adequate description of sulfur hydrogen bonding required explicit inclusion of lone pairs. There are two fundamental problems in simulating the struc­ tural and energetic properties of molecules: the first is how to choose an analytical been placed E(R) which correctly describes the energy of the system in terms of its 3N degrees of freedom. The second is how the simulation can search or span conforma­ tional space (R) in order to answer questions posed by the scientist interested in the properties of the system. For complex systems, solution to the first problem are an es­ sential first step in attacking the second problem, and thus, considerable effort has been placed in developing analytical functions that are simple enough to allow one to simulate the properties of complex molecules yet accurate enough to obtain meaningful estimates for structures and energies. In the case of the structures and thermodynamic stabilities of saturated hydrocarbons in inert solvents or the gas phase, the first problem has been essentially solved by molecular mechanics ap­ proaches of Allinger, I Ermer and Lifson,2 and their co-workers. However, for polar and ionic molecules in condensed phases, unsolved questions remain as to the best form of the analytical function E(R). In the area of proteins and peptides, seminal work has come from the Scheraga 3 and Lifson 4 schools. The Scheraga group has used both crystal packing (intermolecular) and con­ formational properties of peptides to arrive at force fields ECEPP, UNECEPP, and EPEN for modeling structural and thermodynamic properties of peptides and proteins. Levitt, using the energy refinement software developed in the Lifson group, has proposed a force field for proteins based on calculations on lysozyme,S and Gelin and Karplus have adapted this software along with many parameters from the Scheraga studies to do molecular dynamics

...read more

4,261 citations


Journal ArticleDOI
Yong Duan1, Chun Wu1, Shibasish Chowdhury1, Mathew C. Lee1  +11 moreInstitutions (3)
TL;DR: A third‐generation point‐charge all‐atom force field for proteins is developed and initial tests on peptides demonstrated a high‐degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace‐Gly‐nme and Ace‐Ala‐Nme di‐peptides.

...read more

Abstract: Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of e = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999–2012, 2003

...read more

3,858 citations


Network Information
Related Topics (5)
Interaction energy

7.7K papers, 220.6K citations

94% related
van der Waals force

25.1K papers, 927K citations

94% related
Force field (physics)

892 papers, 15K citations

93% related
Energy landscape

3.1K papers, 133.4K citations

93% related
Ab initio

57.3K papers, 1.6M citations

93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202228
2021949
2020933
2019880
2018962
2017916

Top Attributes

Show by:

Topic's top 5 most impactful authors

Adri C. T. van Duin

103 papers, 10K citations

Bernd M. Rode

89 papers, 3.1K citations

Wilfred F. van Gunsteren

80 papers, 5.7K citations

Michael L. Klein

80 papers, 7.7K citations

Benoît Roux

64 papers, 8.1K citations