scispace - formally typeset
Search or ask a question
Topic

Molecular orbital theory

About: Molecular orbital theory is a research topic. Over the lifetime, 4537 publications have been published within this topic receiving 251469 citations. The topic is also known as: molecular orbital method & MO theory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding, which is written as linear combinations of gauge invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory.
Abstract: An ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding. The molecular orbitals are written as linear combinations of gauge-invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory. The final magnetic shielding result is broken up into contributions which can be related to various features of electronic structure. Calculated magnetic shielding constants are presented using three sets of atomic orbitals, all of which are taken as contracted gaussian-type functions. The first two sets are minimal and the third is slightly extended. All three levels of theory give good descriptions of shielding at first row and hydrogen atoms. Carbon and hydrogen chemical shifts calculated at the extended level are in excellent agreement with experimental values.

3,843 citations

Journal ArticleDOI
TL;DR: In this article, a least square representation of Slater-type atomic orbitals as a sum of Gaussian-type orbitals is presented, where common Gaussian exponents are shared between Slater−type 2s and 2p functions.
Abstract: Least‐squares representations of Slater‐type atomic orbitals as a sum of Gaussian‐type orbitals are presented. These have the special feature that common Gaussian exponents are shared between Slater‐type 2s and 2p functions. Use of these atomic orbitals in self‐consistent molecular‐orbital calculations is shown to lead to values of atomization energies, atomic populations, and electric dipole moments which converge rapidly (with increasing size of Gaussian expansion) to the values appropriate for pure Slater‐type orbitals. The ζ exponents (or scale factors) for the atomic orbitals which are optimized for a number of molecules are also shown to be nearly independent of the number of Gaussian functions. A standard set of ζ values for use in molecular calculations is suggested on the basis of this study and is shown to be adequate for the calculation of total and atomization energies, but less appropriate for studies of charge distribution.

3,723 citations

Book
01 Jan 1982
TL;DR: The theory of Van Der Waals statistical mechanics of the liquid-gas surface model fluids in the mean-field approximation computer simulation of the calculation of the density profile three-phase equilibrium interfaces near critical points as mentioned in this paper.
Abstract: Mechanical molecular models thermodynamics the theory of Van Der Waals statistical mechanics of the liquid-gas surface model fluids in the mean-field approximation computer simulation of the liquid-gas surface calculation of the density profile three-phase equilibrium interfaces near critical points. Appendices: thermodynamics Dirac's delta-function.

3,403 citations

Journal ArticleDOI
TL;DR: The Gaussian-2 theoretical procedure (G2 theory) as discussed by the authors was proposed to calculate molecular energies (atomization energies, ionization potentials, and electron affinities) of compounds containing first and second-row atoms.
Abstract: The Gaussian‐2 theoretical procedure (G2 theory), based on a b i n i t i o molecular orbital theory, for calculation of molecular energies (atomization energies, ionization potentials,electron affinities, and proton affinities) of compounds containing first‐ (Li–F) and second‐row atoms (Na–Cl) is presented. This new theoretical procedure adds three features to G1 theory [J. Chem. Phys. 9 0, 5622 (1989)] including a correction for nonadditivity of diffuse‐s p and 2d f basis set extensions, a basis set extension containing a third d function on nonhydrogen and a second p function on hydrogen atoms, and a modification of the higher level correction. G2 theory is a significant improvement over G1 theory because it eliminates a number of deficiencies present in G1 theory. Of particular importance is the improvement in atomization energies of ionic molecules such as LiF and hydrides such as C2H6, NH3, N2H4, H2O2, and CH3SH. The average absolute deviation from experiment of atomization energies of 39 first‐row compounds is reduced from 1.42 to 0.92 kcal/mol. In addition, G2 theory gives improved performance for hypervalent species and electron affinities of second‐row species (the average deviation from experiment of electron affinities of second‐row species is reduced from 1.94 to 1.08 kcal/mol). Finally, G2 atomization energies for another 43 molecules, not previously studied with G1 theory, many of which have uncertain experimental data, are presented and differences with experiment are assessed.

3,216 citations

Book
01 Jan 1970

2,749 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
89% related
Ground state
70K papers, 1.5M citations
87% related
Density functional theory
66.1K papers, 2.1M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202219
202128
202017
201913
201828