scispace - formally typeset
Search or ask a question
Topic

Monocarboxylate transporter

About: Monocarboxylate transporter is a research topic. Over the lifetime, 716 publications have been published within this topic receiving 40230 citations. The topic is also known as: Monocarboxylate Transporter & Monocarboxylate transporter.


Papers
More filters
Journal ArticleDOI
TL;DR: There is still much work to be done to characterize the properties of the different MCT isoforms and their regulation, which may have wide-ranging implications for health and disease.
Abstract: Monocarboxylates such as lactate and pyruvate play a central role in cellular metabolism and metabolic communication between tissues. Essential to these roles is their rapid transport across the plasma membrane, which is catalysed by a recently identified family of proton-linked monocarboxylate transporters (MCTs). Nine MCT-related sequences have so far been identified in mammals, each having a different tissue distribution, whereas six related proteins can be recognized in Caenorhabditis elegans and 4 in Saccharomyces cerevisiae. Direct demonstration of proton-linked lactate and pyruvate transport has been demonstrated for mammalian MCT1-MCT4, but only for MCT1 and MCT2 have detailed analyses of substrate and inhibitor kinetics been described following heterologous expression in Xenopus oocytes. MCT1 is ubiquitously expressed, but is especially prominent in heart and red muscle, where it is up-regulated in response to increased work, suggesting a special role in lactic acid oxidation. By contrast, MCT4 is most evident in white muscle and other cells with a high glycolytic rate, such as tumour cells and white blood cells, suggesting it is expressed where lactic acid efflux predominates. MCT2 has a ten-fold higher affinity for substrates than MCT1 and MCT4 and is found in cells where rapid uptake at low substrate concentrations may be required, including the proximal kidney tubules, neurons and sperm tails. MCT3 is uniquely expressed in the retinal pigment epithelium. The mechanisms involved in regulating the expression of different MCT isoforms remain to be established. However, there is evidence for alternative splicing of the 5'- and 3'-untranslated regions and the use of alternative promoters for some isoforms. In addition, MCT1 and MCT4 have been shown to interact specifically with OX-47 (CD147), a member of the immunoglobulin superfamily with a single transmembrane helix. This interaction appears to assist MCT expression at the cell surface. There is still much work to be done to characterize the properties of the different isoforms and their regulation, which may have wide-ranging implications for health and disease. In the future it will be interesting to explore the linkage of genetic diseases to particular MCTs through their chromosomal location.

1,298 citations

Journal ArticleDOI
TL;DR: The monocarboxylate cotransporter family now comprises 14 members, of which only the first four (MCT1–MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monoccarboxylates such as lactate, pyruvate and ketone bodies.
Abstract: The monocarboxylate cotransporter (MCT) family now comprises 14 members, of which only the first four (MCT1-MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monocarboxylates such as lactate, pyruvate and ketone bodies. SLC16A10 (T-type amino-acid transporter-1, TAT1) is an aromatic amino acid transporter whilst the other members await characterization. MCTs have 12 transmembrane domains (TMDs) with intracellular N- and C-termini and a large intracellular loop between TMDs 6 and 7. MCT1 and MCT4 require a monotopic ancillary protein, CD147, for expression of functional protein at the plasma membrane. Lactic acid transport across the plasma membrane is fundamental for the metabolism of and pH regulation of all cells, removing lactic acid produced by glycolysis and allowing uptake by those cells utilizing it for gluconeogenesis (liver and kidney) or as a respiratory fuel (heart and red muscle). The properties of the different MCT isoforms and their tissue distribution and regulation reflect these roles.

964 citations

Journal ArticleDOI
TL;DR: It is concluded that MCT4, like other glycolytic enzymes, is up-regulated by hypoxia through a HIF-1α-mediated mechanism, which allows the increased lactic acid produced during Hypoxia to be rapidly lost from the cell.

800 citations

Journal ArticleDOI
TL;DR: There are distinct Na(+)-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which enable active uptake of lactate, pyruvate, and ketone bodies in these tissues.
Abstract: Transport of L-lactate across the plasma membrane is of considerable importance to almost all mammalian cells. In most cells a specific H(+)-monocarboxylate cotransporter is largely responsible for this process; the capacity of this carrier is usually very high, to support the high rates of production or utilization of L-lactate. The best characterized H(+)-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates, including pyruvate and the ketone bodies acetoacetate and beta-hydroxybutyrate. This carrier is inhibited by alpha-cyanocinnamate derivatives and some stilbene disulfonates and has been identified as a protein of 35-50 kDa on the basis of purification and specific labeling experiments. Other cells possess similar alpha-cyanocinnamate-sensitive H(+)-linked monocarboxylate transporters, but in some cases there are significant differences in the properties of these systems, sufficient to suggest the existence of a family of such carriers. In particular, cardiac muscle and tumor cells have transporters that differ in their Km values for certain substrates (including stereoselectivity for L- over D-lactate) and in their sensitivity to inhibitors. Mitochondria, bacteria, and yeast also possess H(+)-monocarboxylate transporters that share some properties in common with those in the mammalian plasma membrane but are adapted to their specific roles. However, there are distinct Na(+)-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which enable active uptake of lactate, pyruvate, and ketone bodies in these tissues. This article reviews the properties of these transport systems and their role in mammalian metabolism.

706 citations

Journal ArticleDOI
TL;DR: Cloned rat MCT8 was identified as a very active and specific thyroid hormone transporter and showed high expression in liver, kidney, brain, and heart.

630 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
84% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Protein kinase A
68.4K papers, 3.9M citations
83% related
Cell culture
133.3K papers, 5.3M citations
82% related
Gene expression
113.3K papers, 5.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
202240
202138
202044
201936
201825