scispace - formally typeset
Search or ask a question

Showing papers on "Monsoon published in 2021"


Journal ArticleDOI
TL;DR: This article provided a review on past monsoon changes and their primary drivers, the projected future changes and key physical processes, and discuss challenges of the present and future modeling and outlooks.
Abstract: Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. NH land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from GHGs and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), and decrease in North America and unchanged in Southern Hemisphere. Over Asian-Australian monsoon region the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.

131 citations


Journal ArticleDOI
01 Jan 2021
TL;DR: The Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States, Central America and the Caribbean as discussed by the authors.
Abstract: The Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States (U.S.), Central America and the Caribbean. The changes are computed using an ensemble of 31 models for three future time slices (2021–2040, 2041–2060, and 2080–2099) relative to the reference period (1995–2014) under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CMIP6 ensemble reproduces the observed annual cycle and distribution of mean annual temperature and precipitation with biases between − 0.93 and 1.27 °C and − 37.90 to 58.45%, respectively, for most of the region. However, modeled precipitation is too large over the western and Midwestern U.S. during winter and spring and over the North American monsoon region in summer, while too small over southern Central America. Temperature is projected to increase over the entire domain under all three SSPs, by as much as 6 °C under SSP5-8.5, and with more pronounced increases in the northern latitudes over the regions that receive snow in the present climate. Annual precipitation projections for the end of the twenty-first century have more uncertainty, as expected, and exhibit a meridional dipole-like pattern, with precipitation increasing by 10–30% over much of the U.S. and decreasing by 10–40% over Central America and the Caribbean, especially over the monsoon region. Seasonally, precipitation over the eastern and central subregions is projected to increase during winter and spring and decrease during summer and autumn. Over the monsoon region and Central America, precipitation is projected to decrease in all seasons except autumn. The analysis was repeated on a subset of 9 models with the best performance in the reference period; however, no significant difference was found, suggesting that model bias is not strongly influencing the projections.

86 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed 32 models of the latest Coupled Model Intercomparison Project Phase 5 (CMIP5) exercise with regard to their annual mean monsoon rainfall and its variability.
Abstract: . The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d −1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.

79 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the physical mechanisms behind the interactions between the Indian summer monsoon rainfall and the Asian dust particularly the Middle East dust, and propose future research directions aimed at improving dust-monsoon simulations in terms of dust longterm variability, absorbing property, and anthropogenic contributions.

71 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a composite speleothem δ18O record of the last ∼14 kyr from Shennong Cave in southeastern China and model-simulated data of rainfall and meteoric ǫ18O over eastern China.

64 citations


Journal ArticleDOI
TL;DR: This first study to obtained comprehensive and comparable baseline data about MPs in the Eastern Indian Ocean, including abundance, spatial distribution and characteristics, shows that MP pollution in the EIO is among the highest of the world's oceans.

56 citations


Journal ArticleDOI
TL;DR: In this paper, the authors combine an isotope-enabled Earth system model in transient experiments with proxy records, and show that the widespread AM δ18Oc signal during the last deglaciation (20 to 11 thousand years ago) is accompanied by a continental-scale, coherent hydroclimate footprint, with spatially opposite signs in rainfall.
Abstract: Oxygen isotope speleothem records exhibit coherent variability over the pan-Asian summer monsoon (AM) region. The hydroclimatic representation of these oxygen isotope records for the AM, however, has remained poorly understood. Here, combining an isotope-enabled Earth system model in transient experiments with proxy records, we show that the widespread AM δ18Oc signal during the last deglaciation (20 to 11 thousand years ago) is accompanied by a continental-scale, coherent hydroclimate footprint, with spatially opposite signs in rainfall. This footprint is generated as a dynamically coherent response of the AM system primarily to meltwater forcing and secondarily to insolation forcing and is further reinforced by atmospheric teleconnection. Hence, widespread δ18Op depletion in the AM region is accompanied by a northward migration of the westerly jet and enhanced southwesterly monsoon wind, as well as increased rainfall from South Asia (India) to northern China but decreased rainfall in southeast China.

56 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper reported paired mean annual air temperature and monsoon intensity proxy records over the past 88,000 years from Lake Tengchongqinghai in southwestern China.
Abstract: Orbital-scale global climatic changes during the late Quaternary are dominated by high-latitude influenced ~100,000-year global ice-age cycles and monsoon influenced ~23,000-year low-latitude hydroclimate variations. However, the shortage of highly-resolved land temperature records remains a limiting factor for achieving a comprehensive understanding of long-term low-latitude terrestrial climatic changes. Here, we report paired mean annual air temperature (MAAT) and monsoon intensity proxy records over the past 88,000 years from Lake Tengchongqinghai in southwestern China. While summer monsoon intensity follows the ~23,000-year precession beat found also in previous studies, we identify previously unrecognized warm periods at 88,000–71,000 and 45,000–22,000 years ago, with 2–3 °C amplitudes that are close to our recorded full glacial-interglacial range. Using advanced transient climate simulations and comparing with forcing factors, we find that these warm periods in our MAAT record probably depends on local annual mean insolation, which is controlled by Earth’s ~41,000-year obliquity cycles and is anti-phased to annual mean insolation at high latitudes. The coincidence of our identified warm periods and intervals of high-frequent dated archaeological evidence highlights the importance of temperature on anatomically modern humans in Asia during the last glacial stage.

55 citations


Journal ArticleDOI
TL;DR: The authors provided an assessment of future daily characteristics of African precipitation by explicitly comparing the results of large ensembles of global (CMIP5, CMIP6) and regional (CORDEX, CORE) climate models.
Abstract: We provide an assessment of future daily characteristics of African precipitation by explicitly comparing the results of large ensembles of global (CMIP5, CMIP6) and regional (CORDEX, CORE) climate models, specifically highlighting the similarities and inconsistencies between them. Results for seasonal mean precipitation are not always consistent amongst ensembles: in particular, global models tend to project a wetter future compared to regional models, especially over the Eastern Sahel, Central and East Africa. However, results for other precipitation characteristics are more consistent. In general, all ensembles project an increase in maximum precipitation intensity during the wet season over all regions and emission scenarios (except the West Sahel for CORE) and a decrease in precipitation frequency (under the Representative Concentration Pathways RCP8.5) especially over the West Sahel, the Atlas region, southern central Africa, East Africa and southern Africa. Depending on the season, the length of dry spells is projected to increase consistently by all ensembles and for most (if not all) models over southern Africa, the Ethiopian highlands and the Atlas region. Discrepancies exist between global and regional models on the projected change in precipitation characteristics over specific regions and seasons. For instance, over the Eastern Sahel in July–August most global models show an increase in precipitation frequency but regional models project a robust decrease. Global and regional models also project an opposite sign in the change of the length of dry spells. CORE results show a marked drying over the regions affected by the West Africa monsoon throughout the year, accompanied by a decrease in mean precipitation intensity between May and July that is not present in the other ensembles. This enhanced drying may be related to specific physical mechanisms that are better resolved by the higher resolution models and highlights the importance of a process-based evaluation of the mechanisms controlling precipitation over the region.

52 citations


Journal ArticleDOI
TL;DR: This article developed a framework based on the Empirical Orthogonal Function analysis, complete ensemble empirical mode decomposition with adaptive noise analysis, and moving-average based Spearman rank correlation to identify the spatial patterns of the dry/wet conditions from 1470 to 2016, decompose the dry and wet index into the leading components with a period between 2 and 3 years and 100+ years, and discover their driving forces on multiple time scales.
Abstract: The Weihe River Basin (WRB) in a monsoon transition zone of East Asia interacts with multiple weather systems and is susceptible to floods and droughts. We developed a framework based on the Empirical Orthogonal Function analysis, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise analysis, and moving-average based Spearman rank correlation to identify the spatial patterns of the dry/wet conditions from 1470 to 2016, decompose the dry/wet index into the leading components with a period between 2 and 3 years and 100+ years, and discover their driving forces on multiple time scales. Results show that WRB can be divided into four distinguishable hydroclimatic subregions located in the southeast, west, central, and north. The East Asian summer monsoon and South Asian summer monsoon impact this region mainly on the inter-annual and inter-decadal scales, while the impacts of ENSO, PDO, AO, and NAO are dominant on the multi-decadal and centennial scales.

52 citations


Journal ArticleDOI
14 Jan 2021
TL;DR: In this article, the authors use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India and show that flash durus predominantly occur during the summer monsoon season (June-September) and driven by the intraseasonal variability of monsoon rainfall.
Abstract: Flash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.

Journal ArticleDOI
TL;DR: In this article, an ensemble of regional climate model (RCM) projections over seven regional CORDEX domains were used to provide, for the first time, an RCM-based global view of monsoon changes at various levels of increased greenhouse gas (GHG) forcing.
Abstract: We use an unprecedented ensemble of regional climate model (RCM) projections over seven regional CORDEX domains to provide, for the first time, an RCM-based global view of monsoon changes at various levels of increased greenhouse gas (GHG) forcing. All regional simulations are conducted using RegCM4 at a 25 km horizontal grid spacing using lateral and lower boundary forcing from three General Circulation Models (GCMs), which are part of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). Each simulation covers the period from 1970 through 2100 under two Representative Concentration Pathways (RCP2.6 and RCP8.5). Regional climate simulations exhibit high fidelity in capturing key characteristics of precipitation and atmospheric dynamics across monsoon regions in the historical period. In the future period, regional monsoons exhibit a spatially robust delay in the monsoon onset, an increase in seasonality, and a reduction in the rainy season length at higher levels of radiative forcing. All regions with substantial delays in the monsoon onset exhibit a decrease in pre-monsoon precipitation, indicating a strong connection between pre-monsoon drying and a shift in the monsoon onset. The weakening of latent heat driven atmospheric warming during the pre-monsoon period delays the overturning of atmospheric subsidence in the monsoon regions, which defers their transitioning into deep convective states. Monsoon changes under the RCP2.6 scenario are mostly within the baseline variability.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood.
Abstract: The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood. We approach this question by integrating modeling results and fossil data. We show that growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegetation and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic change is critical for understanding the finer details of Asian vegetation and plant diversity evolution.

Posted ContentDOI
TL;DR: The authors in this paper reviewed the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia.
Abstract: . The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Nino–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH 4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem.

Journal ArticleDOI
TL;DR: In this article, in-situ observations from Pakistan Meteorological Department (PMD), remotely sensed precipitation data from Climate Hazard Infrared Precipitation with Station data (CHIRPS), reanalysis data from ERA5, and National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) during 1981-2018 are used to explore the atmospheric circulation patterns during above and below normal precipitation episodes.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized two decades (2000-2019) of climatology and trends in aerosol loading and optical properties using a high spatial resolution data obtained from NASA's MODIS MAIAC and MISR aerosol products supplemented by moderate resolution aerosol data from OMI sensor over South Asia (SA).

Journal ArticleDOI
Xiaohui Wang1, Kai Liu1, Lixin Zhu1, Changjun Li1, Zhangyu Song1, Daoji Li1 
TL;DR: Wang et al. as discussed by the authors conducted a study along the southeast coast of China during the East Asian summer monsoon (EASM) and found that the EASM transports atmospheric MPs back onto the continent at a flux of up to 212.977-213.433 kg/EASm/year.

Journal ArticleDOI
TL;DR: In this paper, the authors reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume.
Abstract: South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.

Journal ArticleDOI
TL;DR: In this paper, the authors used the geographic information system (GIS) to perform spatial data analysis on both vector and raster data and used Sen's slope estimator and the Mann-Kendall (M-K) test to investigate the trends in annual and seasonal rainfall throughout all districts and climatic zones of Sri Lanka.
Abstract: Analysis of long-term rainfall trends provides a wealth of information on effective crop planning and water resource management, and a better understanding of climate variability over time. This study reveals the spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. The exclusivity of the study is the use of rainfall data that provide spatial variability instead of the traditional location-based approach. Henceforth, daily rainfall data available at Climate Hazards Group InfraRed Precipitation corrected with stations (CHIRPS) data were used for this study. The geographic information system (GIS) is used to perform spatial data analysis on both vector and raster data. Sen’s slope estimator and the Mann–Kendall (M–K) test are used to investigate the trends in annual and seasonal rainfall throughout all districts and climatic zones of Sri Lanka. The most important thing reflected in this study is that there has been a significant increase in annual rainfall from 1989 to 2019 in all climatic zones (wet, dry, intermediate, and Semi-arid) of Sri Lanka. The maximum increase is recorded in the wet zone and the minimum increase is in the semi-arid zone. There could be an increased risk of floods in the southern and western provinces in the future, whereas areas in the eastern and southeastern districts may face severe droughts during the northeastern monsoon. It is advisable to introduce effective drought and flood management and preparedness measures to reduce the respective hazard risk levels.

Journal ArticleDOI
01 Jan 2021
TL;DR: In this paper, the authors evaluate the capability of 21 models from the Coupled Model Intercomparison Project, Phase 6 (CMIP6) in the representation of present-day precipitation characteristics and extremes along with their statistics in simulating daily precipitation during the West African Monsoon (WAM) period (June-September).
Abstract: We evaluate the capability of 21 models from the new state-of-the-art Coupled Model Intercomparison Project, Phase 6 (CMIP6) in the representation of present-day precipitation characteristics and extremes along with their statistics in simulating daily precipitation during the West African Monsoon (WAM) period (June–September). The study uses a set of standard extreme precipitation indices as defined by the Expert Team on Climate Change Detection and Indices constructed using CMIP6 models and observational datasets for comparison. Three observations; Global Precipitation Climatology Project (GPCP), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), and Tropical Applications of Meteorology using SATellite and ground-based observation (TAMSAT) datasets are used for the validation of the model simulations. The results show that observed datasets present nearly the same spatial pattern but discrepancies in the magnitude of rainfall characteristics. The models show substantial discrepancies in comparison with the observations and among themselves. A number of the models depict the pattern of rainfall intensity as observed but some models overestimate the pattern over the coastal parts (FGOALS-f3-L and GFDL-ESM4) and western part (FGOALS-f3-L) of West Africa. All model simulations explicitly show the pattern of wet days but with large discrepancies in their frequencies. On extreme rainfall, half of the models express more intense extremes in the 95th percentiles while the other half simulate less intense extremes. All the models overestimate the mean maximum wet spell length except FGOALS-f3-L. The spatial patterns of the mean maximum dry spell length show a good general agreement across the different models, and the observations except for four models that show an overestimation in the Sahara subregion. INM-CM4-8 and INM-CM5-0 display smaller discrepancies from their long-term average rainfall characteristics, in terms of extreme rainfall estimates than the other CMIP6 datasets. For the frequency of heavy rainfall, TaiESM1 and IPSL-CMGA-LR perform better when compared with observational datasets. MIROC6 and GFDL-ESM4 displayed the largest error in representing the frequency of heavy rainfall and 95th percentile extremes, and therefore, cannot be reliable. The study has assessed how rainfall extremes are captured in both observation and the models. Though there are some discrepancies, it gives room for improvement of the models in the next version of CMIP.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors analyzed the spatiotemporal variations of extreme precipitation events in the Qinba mountains and the relationship between the changes of the extreme precipitation indices and potential factors (including geographical factors and atmospheric circulation patterns).

Journal ArticleDOI
TL;DR: In this article, the authors investigate how the North Atlantic sea surface temperature (SST) and Tibetan Plateau (TP) forcing affect this seasonal transition over South Asia on interannual timescale.
Abstract: The South Asian circulation and precipitation in spring shows a clear seasonal transition and interannual variation. We investigate how the North Atlantic sea surface temperature (SST) and Tibetan Plateau (TP) forcing affect this seasonal transition over South Asia on interannual timescale. Our results suggest that North Atlantic SST can affect the seasonal transition of South Asian monsoon via TP forcing in spring. The positive tripole pattern of North Atlantic SST anomaly during winter–spring can trigger a steady downstream Rossby wave train with cyclonic circulation over the southwestern TP. This forms a spring dipole mode of surface sensible heating and 10 m winds over the plateau, with a westerly (easterly) flow and positive (negative) surface sensible heating over its southern (northern) regions. A distinct land–air coupling configuration in May is then generated on the southwestern TP via such a positive TP dipole mode, which consists of anomalous positive precipitation, negative surface sensible heating and a baroclinic circulation structure with cyclonic circulation in the mid- to upper troposphere and a shallow anticyclonic circulation in the lower layer. The anticyclonic circulation is opposite to the summertime monsoon circulation. It weakens the cross-equatorial flow and water vapor transport to the South Arabian Sea and Bay of Bengal, resulting in in-situ precipitation reduction. Consequently, the seasonal transition in circulation over South Asia from winter to summer is delayed.

Journal ArticleDOI
TL;DR: In this article, a set of transient earth system model simulations with proxy records was used to reconcile different evolution behaviors of monsoon proxy records; it sheds light on the driving mechanism of the monsoon evolution and monsoon-ecosystem feedback over northern China, with implications to climate changes in other high climate sensitivity regions over the globe.
Abstract: One long-standing issue in the paleoclimate records is whether East Asian Summer Monsoon peaked in the early Holocene or mid-Holocene. Here, combining a set of transient earth system model simulations with proxy records, we propose that, over northern China, monsoon rainfall peaked in the early Holocene, while soil moisture and tree cover peaked in the mid-Holocene. The delayed ecosystem (soil moisture and tree cover) response to rainfall is caused by the vegetation response to winter warming and the subsequent feedback with soil moisture. Our study provides a mechanism for reconciling different evolution behaviors of monsoon proxy records; it sheds light on the driving mechanism of the monsoon evolution and monsoon-ecosystem feedback over northern China, with implications to climate changes in other high climate sensitivity regions over the globe. How the East Asian Summer Monsoon has changed over the Holocene has been debated, as some proxy records disagree with each other. Here, the authors suggest that monsoonal rainfall peaked in the early Holocene, while ecosystem responses peaked in the mid-Holocene, explaining the differences between records.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the impact that changing monsoon rainfall has had on NW Himalayan landscapes and its foreland since the middle Miocene and found that rates of erosion are linked to summer monsoon rains over tectonic timescales but patterns of erosion were more explicitly linked to tectonically-driven rock uplift.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate historical trends from 1960 to 2017 in rainfall, soil moisture, evapotranspiration, and runoff to explain changing drought and flooding in Australia.

Journal ArticleDOI
TL;DR: In this article, the authors reconstructed temperature changes using Pediastrum species data, verified by clumped isotopes (Δ47), in the carbonates of sediment cores recovered from Bosten Lake in Xinjiang Province, northwestern China.


Journal ArticleDOI
TL;DR: A multi-day atmospheric river (AR) in the second week of August 2018 was pivotal in causing extreme precipitation over south-west coast of India that eventually lead to record-breaking floods in the state of Kerala as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, the authors compared eleven different precipitation datasets, including the reanalysis datasets ERA5 and WFDE5 from the ECMWF family, to quantify the differences between the widely used precipitation datasets and to identify their particular strengths and shortcomings.
Abstract: Precipitation is a key component of the hydrological cycle and one of the most important variables in weather and climate studies. Accurate and reliable precipitation data are crucial for determining climate trends and variability. In this study, eleven different precipitation datasets are compared, six reanalysis and five observational datasets, including the reanalysis datasets ERA5 and WFDE5 from the ECMWF family, to quantify the differences between the widely used precipitation datasets and to identify their particular strengths and shortcomings. The comparisons are focused on the common time period 1983 through 2016 and on monthly, seasonal, and inter-annual times scales in regions representing different precipitation regimes, i.e., the Tropics, the Pacific Inter Tropical Convergence Zone (ITCZ), Central Europe, and the South Asian Monsoon region. For the analysis, satellite-gauge precipitation data from the Global Precipitation Climatology Project (GPCP-SG) are used as a reference. The comparison shows that ERA5 and ERA5-Land are a clear improvement over ERA-Interim and show in most cases smaller biases than the other reanalysis datasets (e.g., around 13% high bias in the Tropics compared to 17% for MERRA-2 and 36% for JRA-55). ERA5 agrees well with observations for Central Europe and the South Asian Monsoon region but underestimates very low precipitation rates in the Tropics. In particular, the tropical ocean remains challenging for reanalyses with three out of four products overestimating precipitation rates over the Atlantic and Indian Ocean.

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of these two flood events using data from multiple sources is provided, which reveals that the flood of 2019 in Kerala satisfies the criteria for a mesoscale cloudburst (MsCB) event, more common in the north but a very rare and never before reported phenomenon in the Kerala region.
Abstract: Kerala, located at the southwest tip of India, witnessed disastrous floods during the monsoon seasons of two consecutive years, 2018 and 2019. This paper provides a detailed analysis of these two flood events using data from multiple sources. The unusually unstable and convective nature of the 2019 event, as detectable in its higher cloud tops and evidently fuelled by anomalously warm local sea temperatures, raises concerns regarding the changing patterns of rainfall over the southern parts of the west coast of India. Specifically, our analysis reveals that the flood of 2019 in Kerala satisfies the criteria for a mesoscale cloudburst (MsCB) event, more common in the north but a very rare and never before reported phenomenon in the Kerala region. Rainfall exceeding 50 mm in 2 h has been reported from many places between 8.00 and 22.00 UTC on the August 8, 2019. Satellite-derived rainfall and cloud microphysical parameters further reveal the uniqueness of the 2019 MsCB event. If 2019 is a harbinger of how global warming may continue to affect this region, transformations of the cloud structure and the recurrence and character of intense rainfall events could pose a major threat to the highly vulnerable Western Ghats ecosystems.