scispace - formally typeset
Search or ask a question
Topic

Monsoon

About: Monsoon is a research topic. Over the lifetime, 16087 publications have been published within this topic receiving 599888 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance of the Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth century.
Abstract: The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Nino3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space–time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.

719 citations

Journal ArticleDOI
TL;DR: In this article, a Holocene Climate Atlas (HOCLAT) is presented based on carefully selected 10,000-year-long time series of temperature and humidity/precipitation, as well as reconstructions of glacier advances.

713 citations

Journal ArticleDOI
TL;DR: The late-Quaternary climate history of monsoonal Central Asia was inferred from 75 palaeoclimatic records which provide information about moisture conditions in the last 50-ka (or part of this period).

712 citations

Journal ArticleDOI
TL;DR: The broad-scale fluctuations of cloudiness over the Eastern Hemisphere during the northern summer monsoon were investigated by using daily satellite mosaic pictures taken from June 1 to September 30, 1973.
Abstract: The broad-scale fluctuations of cloudiness over the Eastern Hemisphere during the northern summer monsoon were investigated by using daily satellite mosaic pictures taken from June 1 to September 30, 1973. Spectral analysis revealed two dominant periodicities, of around 40 days and around 15 days. Cross-spectral, time-sectional, time-lag correlation and phase-lag vector analysis were applied to reveal the characteristics of these two modes in the time-space field. The fluctuation of 40-day period shows marked northward movement of cloudiness from the equatorial zone to the mid-latitudes (around 30 * E) over the whole Asian monsoon area, and southward movement over Africa and the central Pacific. The northward movement is most apparent over the India-Indian Ocean sector. The fluctuation of this mode is associated with the major "active"-"break" cycle of the monsoon over the whole Asian monsoon area. The fluctuation of 15-day period shows similar features to that of 40-day period, but includes two clockwise rotations, one over India and Southeast Asia and the other over the western Pacific. A southward movement from the equatorial zone to the Southern Hemisphere middle latitudes is also prominent to the east and west of Australia. The fluctuation of this mode seems to correspond with the movements of equatorial, monsoon (or tropical), and westerly disturbances. It is also suggested that the fluctuation of 40-day period may be closely connected with the global-scale zonal oscillation in the equatorial zone and that of 15-day period may exist as a result of meridional wave interactions.

712 citations

Journal ArticleDOI
TL;DR: This article identified and documented a suite of large-scale drivers of rainfall variability in the Australian region, including El Nino-Southern Oscillation (ENSO), Indian Ocean dipole (IOD), Madden-Julian oscillation and atmospheric blocking.
Abstract: This work identifies and documents a suite of large-scale drivers of rainfall variability in the Australian region. The key driver in terms of broad influence and impact on rainfall is the El Nino–Southern Oscillation (ENSO). ENSO is related to rainfall over much of the continent at different times, particularly in the north and east, with the regions of influence shifting with the seasons. The Indian Ocean dipole (IOD) is particularly important in the June–October period, which spans much of the wet season in the southwest and southeast where IOD has an influence. ENSO interacts with the IOD in this period such that their separate regions of influence cover the entire continent. Atmospheric blocking also becomes most important during this period and has an influence on rainfall across the southern half of the continent. The Madden–Julian oscillation can influence rainfall in different parts of the continent in different seasons, but its impact is strongest on the monsoonal rains in the north. Th...

699 citations


Network Information
Related Topics (5)
Precipitation
32.8K papers, 990.4K citations
93% related
Climate model
22.2K papers, 1.1M citations
90% related
Sea ice
24.3K papers, 876.6K citations
87% related
Climate change
99.2K papers, 3.5M citations
84% related
Global warming
36.6K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,221
20222,355
2021922
2020757
2019749
2018727