scispace - formally typeset
Search or ask a question
Topic

Monsoon

About: Monsoon is a research topic. Over the lifetime, 16087 publications have been published within this topic receiving 599888 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to estimate the role of air-sea coupling.
Abstract: The climatology and interannual variability of the East Asian summer monsoon (EASM) simulated by 34 coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated. To estimate the role of air‐sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The interannual EASM pattern is evaluated by a skill formula and the highest/lowest eight models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies, and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO‐western Pacific anticyclone (WPAC) teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the TEIO SST anomaly is warmer in CGCMs, since the easterly wind anomalies in the southern flank of the WPAC reduce the climatological monsoon westerlies and decrease the surface evaporation. The warmer TEIO induces the stronger precipitation anomaly and intensifies the teleconnection. Hence, the interannual EASM pattern is better simulated in CGCMs than that in AGCMs.

160 citations

Journal ArticleDOI
TL;DR: In this article, the modified water accounting model with two atmospheric reanalyses, ground-observed precipitation, and evaporation from a land surface model was applied to investigate the change in moisture source of the precipitation over the targeted region.
Abstract: Evidence has suggested a wetting trend over part of the Tibetan Plateau (TP) in recent decades, although there are large uncertainties in this trend due to sparse observations. Examining the change in the moisture source for precipitation over a region in the TP with the most obvious increasing precipitation trend may help understand the precipitation change. This study applied the modified Water Accounting Model with two atmospheric reanalyses, ground-observed precipitation, and evaporation from a land surface model to investigate the change in moisture source of the precipitation over the targeted region. The study estimated that on average more than 69% and more than 21% of the moisture supply to precipitation over the targeted region came from land and ocean, respectively. The moisture transports from the west of the TP by the westerlies and from the southwest by the Indian summer monsoon likely contributed the most to precipitation over the targeted region. The moisture from inside the region...

160 citations

Journal ArticleDOI
TL;DR: In this article, high-resolution paleomonsoon proxy records from peat and eolian sand-paleosol sequences at the desert-loess transition zone in China denote a rapid oscillation from cold-dry conditions (11,200-10,60014C yr B.P.) to cool-humid conditions (10, 600 −10,200 14C yrB.P.).

160 citations

Journal ArticleDOI
TL;DR: In this article, a concordance of results from three separate hydrologic systems suggests that changes in groundwater discharge and recharge are regional and reflect climatic fluctuations in the Atacama Desert.
Abstract: In northern Chile, precipitation in the High Andes (>3500 m) recharges groundwater systems that flow down the Pacific slope and feed large aquifers in the hyperarid Atacama Desert. Wetlands, which are often found along the base of the Andes, mark locations where the water table intersects the land surface. At these locations, paleo–wetland deposits, which are present as terraces between 3 and 20 m above modern wetlands, record past water-table heights along the Andean front and are used to reconstruct changes in groundwater discharge. Paleo–wetland deposits in the central Atacama Desert (lat 22°–24°S) record an episode (>15.4–9 ka) of high water tables followed by an episode (8–3 ka) of moderately high water tables. Elevated water tables result from increased groundwater discharge and ultimately from enhanced recharge in the Andes. The concordance of results from three separate hydrologic systems suggests that changes in groundwater discharge and recharge are regional and reflect climatic fluctuations. This interpretation is supported by close agreement with other paleoclimatic records in the region. The periods of greater groundwater discharge were separated by episodes (9–8 and 3–0 ka) of significant groundwater lowering and stream incision, implying greatly diminished discharge. The central Atacama and Andes (lat 22°– 24°S) receive precipitation mainly from moist air masses transported from the Amazon Basin by the South American Summer Monsoon (SASM). Increases in groundwater recharge are therefore thought to reflect an increase in the frequency and/or moisture content of SASM air masses crossing the Andes. Fluctuations in SASM precipitation have previously been linked to summer insolation in the Southern Hemisphere. The wettest period in the central Atacama (>15.4–9 ka), however, coincides with a minimum in austral-summer insolation at 10 ka, suggesting that regional summer insolation is not a dominant influence on the SASM. Instead, intensification of the SASM may be linked to extraregional forcings such as the Walker Circulation.

159 citations

Journal ArticleDOI
TL;DR: The Bengal basin is the largest fluvio-deltaic sedimentary system on Earth and is located in Bangladesh and three eastern states of India as discussed by the authors, which is bounded by the Indian craton on the west and the Indo-Burmese fold belts on the east.

159 citations


Network Information
Related Topics (5)
Precipitation
32.8K papers, 990.4K citations
93% related
Climate model
22.2K papers, 1.1M citations
90% related
Sea ice
24.3K papers, 876.6K citations
87% related
Climate change
99.2K papers, 3.5M citations
84% related
Global warming
36.6K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,221
20222,355
2021922
2020757
2019749
2018727