scispace - formally typeset
Search or ask a question
Topic

Monsoon

About: Monsoon is a research topic. Over the lifetime, 16087 publications have been published within this topic receiving 599888 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively.
Abstract: The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.

386 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the variation of precipitation from 1866 to 2006 in the northwestern Himalaya (NWH) using available instrumental records, and showed that the teleconnections that appear to exist between the precipitation and the temperature until the late 1960s seem to have weakened considerably in the last three decades.
Abstract: Using available instrumental records, this paper examines the variation of precipitation from 1866 to 2006 in the northwestern Himalaya (NWH). The study indicates no trend in the winter precipitation but significant decreasing trend in the monsoon precipitation during the study period. Periodicities on a multi-decadal scale (29–34 years and 58–64 years) obtained in power spectrum analyses point towards epochal behaviour in the precipitation series. Analyses of the temperature data show significant increasing trends in annual temperature in all three stations in the NWH during the data period. Warming effect is particularly noteworthy during the winter season. Negative relationships between mean winter air temperature and snowfall amounts recorded at different meteorological stations in this period reveal strong effect of rising temperatures on the decreasing snowfall component in total winter precipitation, reducing effective duration of winter on the windward side of the Pir Panjal Himalayan Range. The study also shows influence of global teleconnections [North-Atlantic Oscillation (NAO) during winter months and Southern Oscillation Index (SOI) during the monsoon months] on precipitation fluctuations in the NWH. The teleconnections that appear to exist between the precipitation and the temperature until the late 1960s seem to have weakened considerably in the last three decades. This may be ascribed to the diminishing effect of the natural factors such as quasi-biennial oscillations (QBO), El Nino Southern Oscillations (ENSO), double sunspot cycles (Hale), etc., in this period. Role of increasing concentration of greenhouse gases in the atmosphere cannot be ruled out. Copyright © 2009 Royal Meteorological Society

385 citations

Journal ArticleDOI
05 Aug 2011-Science
TL;DR: A high-resolution continental record from southwestern China is presented that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well as explains much of the nonorbital scale variance in the Pleistocene ISM record.
Abstract: The modern Indian summer monsoon (ISM) is characterized by exceptionally strong interhemispheric transport, indicating the importance of both Northern and Southern Hemisphere processes driving monsoon variability. Here, we present a high-resolution continental record from southwestern China that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well. Interglacial ISM maxima are dominated by an enhanced Indian low associated with global ice volume minima. In contrast, the glacial ISM reaches a minimum, and actually begins to increase, before global ice volume reaches a maximum. We attribute this early strengthening to an increased cross-equatorial pressure gradient derived from Southern Hemisphere high-latitude cooling. This mechanism explains much of the nonorbital scale variance in the Pleistocene ISM record.

384 citations

Journal ArticleDOI
TL;DR: A 47-year record (1951-1997) of gridded data covering Africa south of the Sahara was used to document the spatial and seasonal patterns of the correlation between precipitation and sea-surface temperatures (SST) in key tropical areas, as depicted by the NIN O3, South Atlantic and North Atlantic indices.
Abstract: A 47-year record (1951-1997) of gridded data covering Africa south of the Sahara was used to document the spatial and seasonal patterns of the correlation between precipitation and sea-surface temperatures (SST) in key tropical areas, as depicted by the NIN O3, South Atlantic and North Atlantic indices. El Nino -Southern Oscillation (ENSO) is confirmed as playing a dominant part in northeastern, eastern and southern Africa. However, its impact is also found over the Sahel during the northern summer, and other parts of the Gulf of Guinea region outside this season, a hitherto poorly documented feature. Over these two areas, ENSO and Atlantic SST (predominantly South Atlantic) contribute to different parts of the rainfall variance. The correlation with South Atlantic SST appears as a south-north dipole (positive/negative correlation) which shifts northward following the Inter-tropical Convergence Zone (ITCZ) translation between the northern low-sun and high-sun periods. A typing of the seasonal correlation patterns and a mapping of the multiple correlation coefficients are carried out in order to synthesize the space-time impacts of the three SST indices. Decadal-scale changes affect the strength of the teleconnections with both Atlantic and East Pacific SST, as reflected for instance by a small rise of the correlation with the NIN O3 index since 1970-1975 in the Sahel and southern Africa, and additional shifts for the Atlantic Ocean, but the main patterns remain generally apparent over the whole period. The circulation anomalies associated with the teleconnections were assessed using National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. A study of the dataset accuracy in depicting long-term climatic variations revealed that a major shift, mainly artificial, is found in 1967-1968 in the time-series of most of the variables. The rest of the work thus concentrated on the 1968-1997 period. A number of changes in east-west circulation patterns have been found to be associated to ENSO variations. Over West Africa, El Nino events tend to result in enhanced northeasterlies/reduced monsoon flow, coupled to weakened upper easterlies, and hence dry conditions over West Africa close to the surface position of the ITCZ, in July-September, as well as January-March. Over the southwestern Indian Ocean, the positive equatorial temperature/geopotential height anomalies, which at 200 hPa accompany El Nino events, are conducive to an eastward shift of the mid-latitude upper troughs, thus being detrimental to summer rainfall over South Africa. Abnormally wet 'short rains' in East Africa can be accounted for by an ENSO-forced weakening of the equatorial Walker-type (east-west) cell which is found over the Indian Ocean during that season. By contrast, the impact of South Atlantic warmings is mostly shown in low-level dynamics, as exemplified by the weakened trades and monsoon flow which directly result in a southward shift of the ITCZ. The combination of ENSO and Atlantic SST anomalies are found to give rise to complex wind flow changes in the near-equatorial Atlantic. In addition to large-scale SST-forced atmospheric dynamics, a few regional atmospheric signals are found to explain residual parts of rainfall variance. For instance, a strengthening of the African Easterly Jet, or northerly wind anomalies across the Sahara, are shown to be related to drought conditions in the Sahel (July-September) and the Gulf of Guinea area (January-March), once the remote effect of SST anomalies is removed. Copyright © 2001 Royal Meteorological Society.

383 citations

Journal ArticleDOI
TL;DR: In this paper, changes due to CO2 doubling in the extremes of the surface climate as simulated by the second-generation circulation model of the Canadian Centre for Climate Modelling and Analysis are studied in two 20-yr equilibrium simulations.
Abstract: Changes due to CO2 doubling in the extremes of the surface climate as simulated by the second-generation circulation model of the Canadian Centre for Climate Modelling and Analysis are studied in two 20-yr equilibrium simulations. Extreme values of screen temperature, precipitation, and near-surface wind in the control climate are compared to those estimated from 17 yr of the NCEP‐NCAR reanalysis data and from some Canadian station data. The extremes of screen temperature are reasonably well reproduced in the control climate. Their changes under CO2 doubling can be connected with other physical changes such as surface albedo changes due to the reduction of snow and sea ice cover as well as a decrease of soil moisture in the warmer world. The signal in the extremes of daily precipitation and near-surface wind speed due to CO 2 doubling is less obvious. The precipitation extremes increase almost everywhere over the globe. The strongest change, over northwest India, is related to the intensification of the summer monsoon in this region in the warmer world. The modest reduction of wind extremes in the Tropics and middle latitudes is consistent with the reduction of the meridional temperature gradient in the 23CO2 climate. The larger wind extremes occur in the areas where sea ice has retreated.

381 citations


Network Information
Related Topics (5)
Precipitation
32.8K papers, 990.4K citations
93% related
Climate model
22.2K papers, 1.1M citations
90% related
Sea ice
24.3K papers, 876.6K citations
87% related
Climate change
99.2K papers, 3.5M citations
84% related
Global warming
36.6K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,221
20222,355
2021922
2020757
2019749
2018727