Topic
Mortar
About: Mortar is a(n) research topic. Over the lifetime, 25024 publication(s) have been published within this topic receiving 218739 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: The use of metakaolin (MK) as a pozzolanic material for mortar and concrete has received considerable attention in recent years as mentioned in this paper, which is part of the widely spread attention directed towards the utilisation of wastes and industrial by-products in order to minimise Portland cement consumption, the manufacture of which being environmentally damaging.
Abstract: The utilisation of calcined clay, in the form of metakaolin (MK), as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This interest is part of the widely spread attention directed towards the utilisation of wastes and industrial by-products in order to minimise Portland cement (PC) consumption, the manufacture of which being environmentally damaging. Another reason is that mortar and concrete, which contain pozzolanic materials, exhibit considerable enhancement in durability properties. This paper reviews work carried out on the use of MK as a partial pozzolanic replacement for cement in mortar and concrete and in the containment of hazardous wastes. The literature demonstrates that MK is an effective pozzolan which causes great improvement in the pore structure and hence the resistance of the concrete to the action of harmful solutions.
903 citations
01 Jan 1994
837 citations
801 citations
TL;DR: In this paper, the properties of cement mortars with nano-SiO 2 were experimentally studied, and the results showed that the compressive strength of mortars containing nano SiO 2 particles was significantly higher than those of those containing silica fume at 7 and 28 days.
Abstract: The properties of cement mortars with nano-SiO 2 were experimentally studied. The amorphous or glassy silica, which is the major component of a pozzolan, reacts with calcium hydroxide formed from calcium silicate hydration. The rate of the pozzolanic reaction is proportional to the amount of surface area available for reaction. Therefore, it is plausible to add nano-SiO 2 particles in order to make high-performance concrete. The experimental results show that the compressive strengths of mortars with nano-SiO 2 particles were all higher than those of mortars containing silica fume at 7 and 28 days. It is demonstrated that the nano-particles are more valuable in enhancing strength than silica fume. In addition, the continuous hydration progress was monitored by scanning electron micrograph (SEM) observation, by examining the residual quantity of Ca(OH) 2 and the rate of heat evolution. The results of these examinations indicate that nano-scale SiO 2 behaves not only as a filler to improve microstructure, but also as an activator to promote pozzolanic reaction.
755 citations
TL;DR: In this article, the authors analyzed data from experimental works carried out in CEDEX and also from literature review to obtain experimental relationships between the attached mortar content and other recycled aggregate properties, covering a wide range of different aggregates qualities.
Abstract: Recycled concrete aggregates mainly differ from natural aggregates in that they are composed of two different materials: natural aggregate and cement mortar attached. It is well known that cement mortar content affects other properties of recycled aggregates: absorption is higher, Los Angeles abrasion coefficient is lower, etc., but the available data that support this statement are scattered, as they were obtained in many individual studies. There is no a general study about the quantitative influence of mortar content on other properties of the recycled aggregate. The objective of this study has been to obtain experimental relationships between the attached mortar content and other recycled aggregate properties, covering a wide range of different aggregates qualities. The interest of these general relationships is diverse: They can be used to establish the mortar content that adversely affects other important properties of the aggregate for different applications. For example, in this research it has been concluded that only recycled aggregates with mortar content under 44% could be used of structural concrete. With this criterion, aggregates with bulk specific density higher than 2160 kg/m3, water absorption lower than 8% and Los Angeles abrasion loss under 40%, are obtained. The results can also be useful for recycling plants as they can adjust the production processes using the relationships to obtain an aggregate with pre-selected properties reducing mortar content, for example, by means of several crushing processes. This research has analyzed data from experimental works carried out in CEDEX and also from literature review. The results show that the main properties unfavourably affected by the attached mortar content are density, absorption and Los Angeles abrasion, and correlations between them and attached mortar content have been obtained and discussed in detail. (A) Reprinted with permission from Elsevier.
645 citations