scispace - formally typeset
Search or ask a question
Topic

Motion estimation

About: Motion estimation is a research topic. Over the lifetime, 31258 publications have been published within this topic receiving 699084 citations.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2013
TL;DR: Dense trajectories were shown to be an efficient video representation for action recognition and achieved state-of-the-art results on a variety of datasets are improved by taking into account camera motion to correct them.
Abstract: Recently dense trajectories were shown to be an efficient video representation for action recognition and achieved state-of-the-art results on a variety of datasets. This paper improves their performance by taking into account camera motion to correct them. To estimate camera motion, we match feature points between frames using SURF descriptors and dense optical flow, which are shown to be complementary. These matches are, then, used to robustly estimate a homography with RANSAC. Human motion is in general different from camera motion and generates inconsistent matches. To improve the estimation, a human detector is employed to remove these matches. Given the estimated camera motion, we remove trajectories consistent with it. We also use this estimation to cancel out camera motion from the optical flow. This significantly improves motion-based descriptors, such as HOF and MBH. Experimental results on four challenging action datasets (i.e., Hollywood2, HMDB51, Olympic Sports and UCF50) significantly outperform the current state of the art.

3,487 citations

Book ChapterDOI
11 May 2004
TL;DR: By proving that this scheme implements a coarse-to-fine warping strategy, this work gives a theoretical foundation for warping which has been used on a mainly experimental basis so far and demonstrates its excellent robustness under noise.
Abstract: We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. In order to allow for large displacements, linearisations in the two data terms are strictly avoided. We present a consistent numerical scheme based on two nested fixed point iterations. By proving that this scheme implements a coarse-to-fine warping strategy, we give a theoretical foundation for warping which has been used on a mainly experimental basis so far. Our evaluation demonstrates that the novel method gives significantly smaller angular errors than previous techniques for optical flow estimation. We show that it is fairly insensitive to parameter variations, and we demonstrate its excellent robustness under noise.

2,902 citations

Journal ArticleDOI
TL;DR: An automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional).
Abstract: We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for nonlinear least-square optimization. The geometric deformation model is a global three-dimensional (3-D) affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intramodality positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. We conclude that the multiresolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster.

2,801 citations

Book ChapterDOI
26 Jun 2000
TL;DR: A novel non-parametric background model that can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes is presented.
Abstract: Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes. The model estimates the probability of observing pixel intensity values based on a sample of intensity values for each pixel. The model adapts quickly to changes in the scene which enables very sensitive detection of moving targets. We also show how the model can use color information to suppress detection of shadows. The implementation of the model runs in real-time for both gray level and color imagery. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.

2,432 citations

Proceedings ArticleDOI
30 Apr 1992
TL;DR: In this paper, the authors describe a general purpose representation independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: This paper describes a general purpose, representation independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six-degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and experience shows that the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. For examples, a given 'model' shape and a sensed 'data' shape that represents a major portion of the model shape can be registered in minutes by testing one initial translation and a relatively small set of rotations to allow for the given level of model complexity. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model prior to shape inspection. The described method is also useful for deciding fundamental issues such as the congruence (shape equivalence) of different geometric representations as well as for estimating the motion between point sets where the correspondences are not known. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces.

2,377 citations


Network Information
Related Topics (5)
Object detection
46.1K papers, 1.3M citations
94% related
Image segmentation
79.6K papers, 1.8M citations
94% related
Feature extraction
111.8K papers, 2.1M citations
93% related
Feature (computer vision)
128.2K papers, 1.7M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022233
2021346
2020479
2019578
2018674