Topic
Motion planning
About: Motion planning is a(n) research topic. Over the lifetime, 32846 publication(s) have been published within this topic receiving 553548 citation(s).
Papers published on a yearly basis
Papers
More filters
01 Aug 1996
TL;DR: Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).
Abstract: A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).
4,454 citations
Journal Article•
TL;DR: The Rapidly-exploring Random Tree (RRT) as discussed by the authors is a data structure designed for path planning problems with high degrees of freedom and non-holonomic constraints, including dynamics.
Abstract: We introduce the concept of a Rapidly-exploring Random Tree (RRT) as a randomized data structure that is designed for a broad class of path planning problems. While they share many of the bene cial properties of existing randomized planning techniques, RRTs are specifically designed to handle nonholonomic constraints (including dynamics) and high degrees of freedom. An RRT is iteratively expanded by applying control inputs that drive the system slightly toward randomly-selected points, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. Several desirable properties and a basic implementation of RRTs are discussed. To date, we have successfully applied RRTs to holonomic, nonholonomic, and kinodynamic planning problems of up to twelve degrees of freedom.
3,002 citations
24 Apr 2000
TL;DR: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces by incrementally building two rapidly-exploring random trees rooted at the start and the goal configurations.
Abstract: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two rapidly-exploring random trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through, the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.
2,617 citations
TL;DR: In this paper, the authors presented the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design), where the task is to determine control inputs to drive a robot from an unknown position to an unknown target.
Abstract: This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an ...
2,541 citations
Book•
05 Mar 2004
TL;DR: Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.
Abstract: Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques.] This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.
2,276 citations