scispace - formally typeset
Search or ask a question
Topic

Motor cortex

About: Motor cortex is a research topic. Over the lifetime, 10413 publications have been published within this topic receiving 670408 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Abstract: An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.

8,766 citations

Journal ArticleDOI
TL;DR: The basal ganglia serve primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex.
Abstract: Information about the basal ganglia has accumulated at a prodigious pace over the past decade, necessitating major revisions in our concepts of the structural and functional organization of these nuclei. From earlier data it had appeared that the basal ganglia served primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex (Allen & Tsukahara 1974, Evarts & Thach 1969, Kemp & Powell 1971). In particular, the basal

8,111 citations

Journal ArticleDOI
20 Jan 2005-Neuron
TL;DR: A very rapid method of conditioning the human motor cortex using rTMS that produces a controllable, consistent, long-lasting, and powerful effect on motor cortex physiology and behavior after an application period of only 20-190 s is described.

3,211 citations

Journal ArticleDOI
TL;DR: The authors show that in the human transcranial direct current stimulation is able to induce sustained cortical excitability elevations, and this technique is a potentially valuable tool in neuroplasticity modulation.
Abstract: The authors show that in the human transcranial direct current stimulation is able to induce sustained cortical excitability elevations. As revealed by transcranial magnetic stimulation, motor cortical excitability increased approximately 150% above baseline for up to 90 minutes after the end of stimulation. The feasibility of inducing long-lasting excitability modulations in a noninvasive, painless, and reversible way makes this technique a potentially valuable tool in neuroplasticity modulation.

2,289 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
91% related
Prefrontal cortex
24K papers, 1.9M citations
91% related
Hippocampus
34.9K papers, 1.9M citations
89% related
Dopaminergic
29K papers, 1.4M citations
88% related
Synaptic plasticity
19.3K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023284
2022639
2021381
2020349
2019357
2018339