scispace - formally typeset
Search or ask a question

Showing papers on "Motor neuron published in 2005"


Journal ArticleDOI
29 Apr 2005-Science
TL;DR: Inferior parietal lobule neurons were studied when monkeys performed motor acts embedded in different actions and when they observed similar acts done by an experimenter to allow the observer to understand the agent's intentions.
Abstract: Inferior parietal lobule (IPL) neurons were studied when monkeys performed motor acts embedded in different actions and when they observed similar acts done by an experimenter. Most motor IPL neurons coding a specific act (e.g., grasping) showed markedly different activations when this act was part of different actions (e.g., for eating or for placing). Many motor IPL neurons also discharged during the observation of acts done by others. Most responded differentially when the same observed act was embedded in a specific action. These neurons fired during the observation of an act, before the beginning of the subsequent acts specifying the action. Thus, these neurons not only code the observed motor act but also allow the observer to understand the agent's intentions.

1,817 citations


Journal ArticleDOI
20 Jan 2005-Neuron
TL;DR: Loss-of-function experiments in null mutant mice for Ctip2 (also known as Bcl11b), one of the newly characterized genes, demonstrate that it plays a critical role in the development of CSMN axonal projections to the spinal cord in vivo, confirming that the central genetic determinants of the CSMN population are identified.

1,064 citations


Journal ArticleDOI
04 Nov 2005-Cell
TL;DR: It is shown that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity and defines the pattern of target-muscle connectivity in spinal motor neurons.

446 citations


Journal ArticleDOI
TL;DR: The brainstem neuromodulatory input provides a mechanism by which the excitability of motoneurons can be varied for different motor behaviors, which is lost in spinal cord injury but PICs nonetheless recover near‐normal amplitudes in the months following the initial injury.
Abstract: The dendrites of motoneurons are not, as once thought, passive conduits for synaptic inputs. Instead they have voltage-dependent channels that provide the capacity to generate a very strong persistent inward current (PIC). The amplitude of the PIC is proportional to the level of neuromodulatory input from the brainstem, which is mediated primarily by the monoamines serotonin and norepinephrine. During normal motor behavior, monoaminergic drive is likely to be moderately strong and the dendritic PIC generates many of the characteristic features of motor unit firing patterns. Most of the PIC activates at or below recruitment threshold and thus motor unit firing patterns exhibit a linear increase just above recruitment. The dendritic PIC allows motor unit derecruitment to occur at a lower input level than recruitment, thus providing sustained tonic firing with little or no synaptic input, especially in low-threshold units. However the dendritic PIC can be readily deactivated by synaptic inhibition. The overall amplification due to the dendritic PIC and other effects of monoamines on motoneurons greatly increases the input-output gain of the motor pool. Thus the brainstem neuromodulatory input provides a mechanism by which the excitability of motoneurons can be varied for different motor behaviors. This control system is lost in spinal cord injury but PICs nonetheless recover near-normal amplitudes in the months following the initial injury. The relationship of these findings to the cause of the spasticity syndrome developing after spinal cord injury is discussed.

401 citations


Journal ArticleDOI
06 Jan 2005-Neuron
TL;DR: In this study, in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities is provided and a brief second wave of oligodendrogenesis in the dorsal spinal cord is revealed.

333 citations


Journal ArticleDOI
22 Dec 2005-Neuron
TL;DR: This review attempts to highlight some of the recent advances made in the understanding of the disease and how loss of the ubiquitously expressed survival of motor neurons (SMN) protein results in the SMA phenotype.

322 citations


Journal ArticleDOI
TL;DR: High‐resolution in vivo imaging in the G93A SOD1 mouse model showed that degenerative axon branches are easily distinguished from those undergoing compensatory reinnervation, showing fragmentation of terminal branches but sparing of the more proximal axon.
Abstract: Amyotrophic lateral sclerosis is a fatal paralytic disease that targets motor neurons, leading to motor neuron death and widespread denervation atrophy of muscle. Previous electrophysiological data have shown that some motor axon branches attempt to compensate for loss of innervation, resulting in enlarged axonal arbors. Recent histological assays have shown that during the course of the disease some axonal branches die back. We thus asked whether the two types of behavior, die-back and compensatory growth, occur in different branches of single neurons or, alternatively, whether entire motor units are of one type or the other. We used high-resolution in vivo imaging in the G93A SOD1 mouse model, bred to express transgenic yellow fluorescent protein in all or subsets of motor neurons. Time-lapse imaging showed that degenerative axon branches are easily distinguished from those undergoing compensatory reinnervation, showing fragmentation of terminal branches but sparing of the more proximal axon. Reconstruction of entire motor units showed that some were abnormally large. Surprisingly, these large motor units contained few if any degenerating synapses. Some small motor units, however, no longer possessed any neuromuscular contacts at all, giving the appearance of "winter trees." Thus, degenerative versus regenerative changes are largely confined to distinct populations of neurons within the same motor pool. Identification of factors that protect "compensatory" motor neurons from degenerative changes may provide new targets for therapeutic intervention.

255 citations


Journal ArticleDOI
TL;DR: The motor neuron–specific gene expression profile in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death and are helpful for developing new therapeutic strategies.
Abstract: The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons isolated from autopsied patients with sporadic ALS were examined. Gene expression was quantitatively assessed by real-time reverse transcription polymerase chain reaction and in situ hybridization. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were downregulated, and 1% were upregulated in motor neurons. Downregulated genes included those associated with cytoskeleton/axonal transport, transcription, and cell surface antigens/receptors, such as dynactin, microtubule-associated proteins, and early growth response 3 (EGR3). In contrast, cell death-associated genes were mostly upregulated. Promoters for cell death pathway, death receptor 5, cyclins A1 and C, and caspases-1, -3, and -9, were upregulated, whereas cell death inhibitors, acetyl-CoA transporter, and NF-kappaB were also upregulated. Moreover, neuroprotective neurotrophic factors such as ciliary neurotrophic factor (CNTF), Hepatocyte growth factor (HGF), and glial cell line-derived neurotrophic factor were upregulated. Inflammation-related genes, such as those belonging to the cytokine family, were not, however, significantly upregulated in either motor neurons or ventral horns. The motor neuron-specific gene expression profile in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death and are helpful for developing new therapeutic strategies.

243 citations


Journal ArticleDOI
TL;DR: GluR2 underediting occurs in a disease specific and region selective manner and is likely that the molecular mechanism underlying the deficiency in RNA editing is a reduction in the activity of ADAR2, a double- strand RNA specific deaminase.
Abstract: One plausible hypothesis for selective neuronal death in sporadic amyotropic lateral sclerosis (ALS) is excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, which are a subtype of ionotropic glutamate receptors. The Ca2+ conductance of AMPA receptors differs markedly depending on whether the GluR2 (or GluR-B) subunit is a component of the receptor. The properties of GluR2 are generated posttranscriptionally by RNA editing at the Q/R site in the putative second membrane domain (M2), during which the glutamine (Q) codon is substituted by an arginine (R) codon. AMPA receptors containing the unedited form of GluR2Q have high Ca2+ permeability in contrast to the low Ca2+ conductance of those containing the edited form of GluR2R. The role of Ca(2+)-permeable AMPA receptors, particularly GluR2 Q/R site RNA editing status, in neuronal death has been clearly demonstrated both in mice deficient in editing at the GluR2 Q/R site and in mice transgenic for an artificial Ca(2+)-permeable GluR2 subunit. We analyzed the expression level of mRNA of each AMPA receptor subunit in individual motor neurons, as well as the editing efficiency of GluR2 mRNA at the Q/R site in the single neuron level in control subjects and ALS cases. There was no significant difference as to the expression profile of AMPA receptor subunits or the proportion of GluR2 mRNA to total GluRs mRNA between normal subjects and ALS cases. By contrast, the editing efficiency varied greatly, from 0% to 100%, among the motor neurons of each individual with ALS, and was not complete in 44 of them (56%), whereas it remained 100% in normal controls. In addition, GluR2 editing efficiency was more than 99% in the cerebellar Purkinje cells of ALS, spinocerebellar degeneration and normal control groups. Thus, GluR2 underediting occurs in a disease specific and region selective manner. GluR2 modification by RNA editing is a biologically crucial event for neuronal survival, and its deficiency is a direct cause of neuronal death. Therefore, marked reduction of RNA editing in ALS motor neurons may be a direct cause of the selective motor neuron death seen in ALS. It is likely that the molecular mechanism underlying the deficiency in RNA editing is a reduction in the activity of ADAR2, a double- strand RNA specific deaminase. The restoration of this enzyme activity in ALS motor neurons may open the novel strategy for specific ALS therapy.

216 citations


Journal ArticleDOI
TL;DR: The data support a model in which the Olig2/Ngn2 ratio in progenitor cells serves as a gate for timing proper gene expression during the development of pMN cells: Olig 2(high) maintains the pMN state, thereby holding cells in reserve for oligodendrocyte generation, whereas Ngn2( high) favors the conversion of p MN cells into post-mitotic motor neurons.
Abstract: Spinal motor neurons and oligodendrocytes are generated sequentially from a common pool of progenitors termed pMN cells. Olig2 is a bHLH-class transcription factor in pMN cells, but it has remained unclear how its transcriptional activity is modulated to first produce motor neurons and then oligodendrocytes. Previous studies have shown that Olig2 primes pMN cells to become motor neurons by triggering the expression of Ngn2 and Lhx3. Here we show that Olig2 also antagonizes the premature expression of post-mitotic motor neuron genes in pMN cells. This blockade is counteracted by Ngn2, which accumulates heterogeneously in pMN cells, thereby releasing a subset of the progenitors to differentiate and activate expression of post-mitotic motor neuron genes. The antagonistic relationship between Ngn2 and Olig2 is mediated by protein interactions that squelch activity as well as competition for shared DNA-binding sites. Our data support a model in which the Olig2/Ngn2 ratio in progenitor cells serves as a gate for timing proper gene expression during the development of pMN cells: Olig2 high maintains the pMN state, thereby holding cells in reserve for oligodendrocyte generation, whereas Ngn2 high favors the conversion of pMN cells into post-mitotic motor

212 citations


Journal ArticleDOI
TL;DR: Electrical stimulation dramatically alters the distribution of regenerating sensory axons, replacing normally random behavior with selective reinnervation of tissue-specific targets, if the enhanced regeneration specificity resulting from electrical stimulation is found to improve function in a large animal model.

Journal ArticleDOI
TL;DR: This report describes the results of clinical and neuropathological studies in a family with an inherited form of motor neuron disease caused by mutation in the p150Glued subunit of dynactin, a microtubule motor protein essential for retrograde axonal transport.
Abstract: Disruption of axonal transport has been implicated in the mechanism of frontotemporal dementia,1 polyglutamine diseases,2,3 and amyotrophic lateral sclerosis.4,5 The importance of the dynein–dynactin microtubule motor proteins, which mediate retrograde axonal transport, has been further emphasized by recent studies showing that mutation or disruption of these motor proteins leads to late-onset motor neuron disease in mice.6,7 We recently reported on a family in which a G59S missense mutation in the p150Glued subunit of dynactin is associated with an autosomal dominant form of motor neuron disease.8 In this study, we delineate the unique clinical, electrophysiological, and pathological effects of this mutation.

Journal ArticleDOI
19 Jan 2005-Brain
TL;DR: The authors showed that diffuse nuclear accumulation of mutant AR was far more frequent and extensive than NIs being distributed in a wide array of CNS nuclei, and in more visceral organs than thus far believed.
Abstract: Spinal and bulbar muscular atrophy (SBMA) is an inherited adult onset motor neuron disease caused by the expansion of a polyglutamine (polyQ) tract within the androgen receptor (AR), affecting only males. The characteristic pathological finding is nuclear inclusions (NIs) consisting of mutant AR with an expanded polyQ in residual motor neurons, and in certain visceral organs. We immunohistochemically examined 11 SBMA patients at autopsy with 1C2, an antibody that specifically recognizes expanded polyQ. Our study demonstrated that diffuse nuclear accumulation of mutant AR was far more frequent and extensive than NIs being distributed in a wide array of CNS nuclei, and in more visceral organs than thus far believed. Mutant AR accumulation was also present in the cytoplasm, particularly in the Golgi apparatus; nuclear or cytoplasmic predominance of accumulation was tissue specific. Furthermore, the extent of diffuse nuclear accumulation of mutant AR in motor and sensory neurons of the spinal cord was closely related to CAG repeat length. Thus, diffuse nuclear accumulation of mutant AR apparently is a cardinal pathogenetic process underlying neurological manifestations, as in SBMA transgenic mice, while cytoplasmic accumulation may also contribute to SBMA pathophysiology.

Journal ArticleDOI
01 Jul 2005-Brain
TL;DR: Evidence is provided that dysregulation of Nrf2 and the ARE, coupled with reduced pentose phosphate pathway activity and decreased generation of NADPH, represent significant and hitherto unrecognized components of the toxic gain of function of mutant SOD1.
Abstract: Familial amyotrophic lateral sclerosis (FALS) is caused, in 20% of cases, by mutations in the Cu/Zn superoxide dismutase gene (SOD1). Although motor neuron injury occurs through a toxic gain of function, the precise mechanism(s) remains unclear. Using an established NSC34 cellular model for SOD1-associated FALS, we investigated the effects of mutant SOD1 specifically in cells modelling the vulnerable cell population, the motor neurons, without contamination from non-neuronal cells present in CNS. Using gene expression profiling, 268 transcripts were differentially expressed in the presence of mutant human G93A SOD1. Of these, 197 were decreased, demonstrating that the presence of mutant SOD1 leads to a marked degree of transcriptional repression. Amongst these were a group of antioxidant response element (ARE) genes encoding phase II detoxifying enzymes and antioxidant response proteins (so-called 'programmed cell life' genes), the expression of which is regulated by the transcription factor NRF2. We provide evidence that dysregulation of Nrf2 and the ARE, coupled with reduced pentose phosphate pathway activity and decreased generation of NADPH, represent significant and hitherto unrecognized components of the toxic gain of function of mutant SOD1. Other genes of interest significantly altered in the presence of mutant SOD1 include several previously implicated in neurodegeneration, as well as genes involved in protein degradation, the immune response, cell death/survival and the heat shock response. Preliminary studies on isolated motor neurons from SOD1-associated motor neuron disease cases suggest key genes are also differently expressed in the human disease.

Journal ArticleDOI
TL;DR: The central plasticity seen after amputation is most likely primarily due to unmasking, rather than replacement, of existing synaptic connections, which has implications for neural control of prosthetic limbs.
Abstract: Much has been studied and written about plastic changes in the CNS of humans triggered by events such as limb amputation. However, little is known about the extent to which the original pathways retain residual function after peripheral amputation. Our earlier, acute study on long-term amputees indicated that central pathways associated with amputated peripheral nerves retain at least some sensory and motor function. The purpose of the present study was to determine if these functional connections would be strengthened or improved with experience and training over several days time. To do this, electrodes were implanted within fascicles of severed nerves of long-term human amputees to evaluate the changes in electrically evoked sensations and volitional motor neuron activity associated with attempted phantom limb movements. Nerve stimulation consistently resulted in discrete, unitary, graded sensations of touch/pressure and joint-position sense. There was no significant change in the values of stimulation parameters required to produce these sensations over time. Similarly, while the amputees were able to improve volitional control of motor neuron activity, the rate and pattern of change was similar to that seen with practice in normal individuals on motor tasks. We conclude that the central plasticity seen after amputation is most likely primarily due to unmasking, rather than replacement, of existing synaptic connections. These results also have implications for neural control of prosthetic limbs.

Journal ArticleDOI
TL;DR: Male mice with inactivated liver X receptor (LXR) beta suffer from adult-onset motor neuron degeneration and it is speculated that absence of LXRbeta leads to pathological accumulation of sterols and lipids that may themselves be neurotoxic or may modulate intracellular pathways and thereby predispose motor neurons to degeneration.
Abstract: Male mice with inactivated liver X receptor (LXR) β suffer from adult-onset motor neuron degeneration. By 7 months of age, motor coordination is impaired, and this condition is associated with lipid accumulation and loss of motor neurons in the spinal cord, together with axonal atrophy and astrogliosis. Several of these features are reminiscent of the neuropathological signs of chronic motor neuron disease such as amyotrophic lateral sclerosis. Because the LXRs are important for cholesterol and lipid metabolism, we speculate that absence of LXRβ leads to pathological accumulation of sterols and lipids that may themselves be neurotoxic or may modulate intracellular pathways and thereby predispose motor neurons to degeneration.

Journal ArticleDOI
TL;DR: The serial combination of motor neuron phenotypic induction followed by Hb9 enhancer-based FACS permitted the high-efficiency induction and isolation of functional motor neurons from hES cells, suggesting the utility of promoter/enhancer- based FACS for the isolation of specific phenotypes from h ES cell populations as a means of purifying clinically appropriate vectors for cell therapy.

Journal ArticleDOI
TL;DR: The variety of morphologies and the anatomic distribution of ub-ir pathology to be greater than previously documented and the degree of overlap suggests that MND, MND-d, and FTD-MND type represent a spectrum of clinical disease with a common pathologic substrate.
Abstract: One of the characteristic pathologic changes in classic motor neuron disease (MND) is the presence of ubiquitin-immunoreactive (ub-ir) inclusions in the cytoplasm of lower motor neurons. In addition, cases of MND with dementia (MND-d) also have ub-ir neuronal cytoplasmic inclusions and dystrophic neurites in extramotor neocortex and hippocampus. Although this extramotor pathology is a highly sensitive marker for dementia in MND, similar changes are found in a subset of patients with frontotemporal dementia (FTD) with no motor symptoms (FTD-MND type). The purpose of this study is to more fully describe and compare the pattern of ub-ir pathology in these 3 conditions. We performed ubiquitin immunohistochemistry on postmortem tissue, representing a wide range of neuroanatomic structures, in cases of classic MND (n = 20), MND-d (n = 15), and FTD-MND type (n = 15). We found the variety of morphologies and the anatomic distribution of ub-ir pathology to be greater than previously documented. Moreover, the degree of overlap suggests that MND, MND-d, and FTD-MND type represent a spectrum of clinical disease with a common pathologic substrate. The only finding restricted to a specific subgroup of patients was the presence of ub-ir neuronal intranuclear inclusions in some cases of familial FTD.

Journal ArticleDOI
TL;DR: A remarkable conservation of the regulatory elements regulating subtype-specific gene expression in motor and sensory neurons and the dynamic process of reorganization of these elements whereby each element increases the level of cell-type specificity by losing redundant functions with the other elements during vertebrate evolution are revealed.


Journal ArticleDOI
W Xu1, L Chi1, R Xu1, Y Ke1, C Luo1, Jun Cai1, M Qiu1, David Gozal1, R Liu1, R Liu2 
TL;DR: Evidence is provided that the increased production of ROS is an early and likely causal event that contributes to the spinal cord motor neuron death following spinal cord injury, and antioxidants/antioxidant enzyme intervention combined with other therapy may provide an effective approach to alleviate spinal cords injury-induced motor neuron damage and motor dysfunction.
Abstract: Study design: Experimental laboratory investigation of the role and pathways of reactive oxygen species (ROS)-mediated motor neuron cell death in a mouse model of compression spinal cord injury. Objectives: To analyze ROS-mediated oxidative stress propagation and signal transduction leading to motor neuron apoptosis induced by compression spinal cord injury. Setting: University of Louisville Health Science Center. Methods: Adult C57BL/6J mice and transgenic mice overexpressing SOD1 were severely lesioned at the lumbar region by compression spinal cord injury approach. Fluorescent oxidation, oxidative response gene expression and oxidative stress damage markers were used to assay spinal cord injury-mediated ROS generation and oxidative stress propagation. Biochemical and immunohistochemical analyses were applied to define the ROS-mediated motor neuron apoptosis resulted from compression spinal cord injury. Results: ROS production was shown to be elevated in the lesioned spinal cord as detected by fluorescent oxidation assays. The early oxidative stress response markers, NF-kB transcriptional activation and c-Fos gene expression, were significantly increased after spinal cord injury. Lipid peroxidation and nucleic acid oxidation were also elevated in the lesioned spinal cord and motor neurons. Cytochrome c release, caspase-3 activation and apoptotic cell death were increased in the spinal cord motor neuron cells after spinal cord injury. On the other hand, transgenic mice overexpressing SOD1 showed lower levels of steady-state ROS production and reduction of motor neuron apoptosis compared to that of control mice after spinal cord injury. Conclusion: These data together provide direct evidence to demonstrate that the increased production of ROS is an early and likely causal event that contributes to the spinal cord motor neuron death following spinal cord injury. Thus, antioxidants/antioxidant enzyme intervention combined with other therapy may provide an effective approach to alleviate spinal cord injury

Journal ArticleDOI
TL;DR: The role of oxidative stress as a major mechanism in the pathogenesis of ALS is supported and structural alteration and activity decline of functional proteins may consistently contribute to the neurodegeneration process in ALS.

Journal ArticleDOI
TL;DR: Investigation of neurotracer transport from muscle to motor neuron in a transgenic mouse model of amyotrophic lateral sclerosis suggested inhibition of dynein/dynactin function may have a role in motor neuron degeneration in amyotroph lateral sclerosis.
Abstract: Cytoplasmic dynein and dynactin drive retrograde axonal transport in neurons, and mutations in dynein/dynactin cause motor neuron degeneration. To test whether defects in dynein/dynactin function are involved in the neurodegenerative disease amyotrophic lateral sclerosis, we examined neurotracer transport from muscle to motor neuron in a transgenic mouse model of amyotrophic lateral sclerosis. Significant inhibition was observed, which was temporally correlated with declines in muscle strength. No decrease in dynein/dynactin expression was observed, but immunohistochemistry suggests that dynein associates with aggregates of mutant Cu/Zn superoxide dismutase 1. Expression of mutant Cu/Zn superoxide dismutase 1 in primary motor neurons altered the cellular localization of dynein, suggesting an inhibition of dynein/dynactin function. Thus, inhibition of dynein/dynactin function may have a role in motor neuron degeneration in amyotrophic lateral sclerosis.

Journal ArticleDOI
17 Feb 2005-Neuron
TL;DR: In vivo time-lapse two-photon imaging of single motor neuron axons labeled with GFP combined with labeling of presynaptic vesicle clusters and postsynaptic acetylcholine receptors in Xenopus laevis tadpoles shows that control GFP-labeled axons are highly dynamic during the period when axon arbors are elaborating.

Journal ArticleDOI
TL;DR: Overexpression of Nrf2 in astrocytes increased survival of co-cultured embryonic motor neurons and prevented motor neuron apoptosis mediated by nerve growth factor through p75 neurotrophin receptor, and emphasize the key role of astroCytes in determining motor neuron fate in amyotrophic lateral sclerosis.

Journal ArticleDOI
TL;DR: A microarray-based method, MAPCeL, is described for profiling gene expression in specific C. elegans motor neurons and evidence is provided that this approach can reveal candidate genes for key roles in the differentiation and function of these cells.
Abstract: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which ~1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system.

Journal ArticleDOI
TL;DR: Results show that the catalytic antioxidant AEOL 10150 provides a pronounced therapeutic benefit with onset administration and is, therefore, a promising agent for the treatment of ALS.
Abstract: Mice that overexpress the human Cu,Zn superoxide dismutase-1 mutant G93A develop a delayed and progressive motor neuron disease similar to human amyotrophic lateral sclerosis (ALS). Most current studies of therapeutics in these mice to date have involved administration of agents long before onset of symptoms, which cannot currently be accomplished in human ALS patients. We examined the effects of the manganese porphyrin AEOL 10150 (manganese [III] tetrakis[N-N'-diethylimidazolium-2-yl]porphyrin) given at symptom onset and found, in three separate studies, that it extended the survival after onset up to 3.0-fold. Immunohistochemical analysis of spinal cord for SMI-32, an abundant protein in motor neurons, indicated better preservation of motor neuron architecture, less astrogliosis (glial fibrillary acidic protein), and markedly less nitrotyrosine and malondialdehyde in porphyrin-treated spinal cords relative to vehicle-treated mice. These results show that the catalytic antioxidant AEOL 10150 provides a pronounced therapeutic benefit with onset administration and is, therefore, a promising agent for the treatment of ALS.

Journal ArticleDOI
TL;DR: An anatomical demonstration of monosynaptic VMC-to-FN pathway in the rat is provided and lentivirus-based expression of GFP and GFP-tagged presynaptic proteins can be used as a high-resolution neuroanatomical tracing method.
Abstract: The mammalian motor cortex typically innervates motor neurons indirectly via oligosynaptic pathways. However, evolution of skilled digit movements in humans, apes, and some monkey species is associated with the emergence of abundant monosynaptic cortical projections onto spinal motor neurons innervating distal limb muscles. Rats perform skilled movements with their whiskers, and we examined the possibility that the rat vibrissa motor cortex (VMC) projects monosynaptically onto facial motor neurons controlling the whisker movements. First, single injections of lentiviruses to VMC sites identified by intracortical microstimulations were used to label a distinct subpopulation of VMC axons or presynaptic terminals by expression of enhanced green fluorescent protein (GFP) or GFP-tagged synaptophysin, respectively. Four weeks after the injections, GFP and synaptophysin-GFP labeling of axons and putative presynaptic terminals was detected in the lateral portion of the facial nucleus (FN), in close proximity to motor neurons identified morphologically and by axonal back-labeling from the whisker follicles. The VMC projections were detected bilaterally, with threefold larger density of labeling in the contralateral FN. Next, multiple VMC injections were used to label a large portion of VMC axons, resulting in overall denser but still laterally restricted FN labeling. Ultrastructural analysis of the GFP-labeled VMC axons confirmed the existence of synaptic contacts onto dendrites and somata of FN motor neurons. These findings provide anatomical demonstration of monosynaptic VMC-to-FN pathway in the rat and show that lentivirus-based expression of GFP and GFP-tagged presynaptic proteins can be used as a high-resolution neuroanatomical tracing method.

Journal ArticleDOI
TL;DR: Results indicate that regenerating motor axons must express polysialylated NCAM, which reduces axon-axon adhesion and enables motor neurons to reinnervate their appropriate muscle targets selectively.
Abstract: It is well established that peripheral nerves regenerate after injury. Therefore, incomplete functional recovery usually results from misguided axons rather than a lack of regeneration per se. Despite this knowledge very little is known about the molecular mechanisms regulating axon guidance during regeneration. In the developing neuromuscular system the neural cell adhesion molecule (NCAM) and its polysialic acid (PSA) moiety are essential for proper motor axon guidance. In this study we used a well established model of nerve transection and repair to examine whether NCAM and/or PSA promotes selective regeneration of femoral motor nerves in wild-type and NCAM (-/-) mice. We found that regenerating axons innervating the muscle pathway and, to a lesser extent, cutaneous axons in the sensory pathway reexpress high levels of PSA during the time when the cut axons are crossing the lesion site. Second, we found that motor neurons in wild-type mice preferentially reinnervated muscle pathways, whereas motor neurons in NCAM (-/-) mice reinnervated muscle and cutaneous pathways with equal preference. Preferential regeneration was not observed in wild-type mice when PSA was removed enzymatically from the regenerating nerve, indicating that this form of selective motor axon targeting requires PSA. Finally, transgenic mice were used to show that the number of collateral sprouts, their field of arborization, and the withdrawal of misprojected axons were all attenuated significantly in mice lacking PSA. These results indicate that regenerating motor axons must express polysialylated NCAM, which reduces axon-axon adhesion and enables motor neurons to reinnervate their appropriate muscle targets selectively.

Journal ArticleDOI
TL;DR: It is suggested that damage to motor neuron cell bodies and dendrites within the spinal cord can be sufficient to induce motor neuron disease and that the activities of chaperones may modulate the cellular specificity of mutant SOD1 accumulation.
Abstract: Mice expressing variants of superoxide dismutase-1 (SOD1) encoding C-terminal truncation mutations linked to familial amyotrophic lateral sclerosis (FALS) have begun to define the role of misfolding and aggregation in the pathogenesis of disease. Here, we examine transgenic mice expressing SOD1-L126Z (Z = stop-truncation of last 28 amino acids), finding that detergent-insoluble mutant protein specifically accumulates in somatodendritic compartments. Soluble forms of the SOD1-L126Z were virtually undetectable in spinal cord at any age and the levels of accumulated protein directly correlated with disease symptoms. Neither soluble nor insoluble forms of SOD1-L126Z were transported to distal axons. In vitro, small heat shock protein (Hsp) alphaB-crystallin suppressed the in vitro aggregation of SOD1-L126Z. In vivo, alphaB-crystallin immunoreactivity was most abundant in oligodendrocytes and up-regulated in astrocytes of symptomatic mice; neither of these cell-types accumulated mutant SOD1 immunoreactivity. These results suggest that damage to motor neuron cell bodies and dendrites within the spinal cord can be sufficient to induce motor neuron disease and that the activities of chaperones may modulate the cellular specificity of mutant SOD1 accumulation.