scispace - formally typeset
Search or ask a question
Topic

Mott transition

About: Mott transition is a research topic. Over the lifetime, 2444 publications have been published within this topic receiving 78401 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin- 1 / 2 Ising-like model.
Abstract: We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin- 1 / 2 Ising-like model. We analyze the case for the spin-liquid candidate κ-(BEDT-TTF) 2Cu 2(CN) 3, where close to the Mott critical end point metallic puddles coexist with an insulating ferroelectric phase. Our results are fourfold: (i) a universal divergent-like behavior of the Gruneisen parameter upon crossing the first-order transition line; (ii) based on scaling arguments, we show that within the coexistence region, for any system close to the critical point, the relaxation-time is entropy-dependent; (iii) we propose the electric Gruneisen parameter Γ E, which quantifies the electrocaloric effect; and (iv) we identify the metallic/insulating coexistence region as an electronic Griffiths-like phase. Our findings suggest that Γ E governs the dielectric response close to the critical point and that an electronic Griffiths-like phase emerges in the coexistence region.

10 citations

Journal ArticleDOI
TL;DR: In this article, the adiabatic preparation of finite-entropy states across the superfluid Mott-insulator quantum critical point was shown for ultracold bosons in an optical lattice.
Abstract: Thermometry of ultracold bosons in an optical lattice shows adiabatic preparation of finite-entropy states across the superfluid---Mott-insulator quantum critical point.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings was used to investigate the magnetic moments near the Mott metal-insulator transition.
Abstract: Dynamics of magnetic moments near the Mott metal-insulator transition is investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings. In the paramagnetic Mott state, the spinon decomposition allows to generate a Sachdev-Ye spin liquid in place of the collection of independent local moments that typically occurs in the absence of magnetic correlations. Cooling down into the spin-liquid phase, the onset of deviations from pure Curie behavior in the spin susceptibility is found to be correlated to the temperature scale at which the Mott transition lines experience a marked bending. We also demonstrate a weakening of the effective exchange energy upon approaching the Mott boundary from the Heisenberg limit, due to quantum fluctuations associated to zero and doubly occupied sites.

10 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature and find universal scaling with respect to both, expressed by the same scaling function.
Abstract: The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory for the DMT based on the parity reflection-time reversal ($\mathcal{P}T$) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class.

10 citations

Journal ArticleDOI
TL;DR: In this article, the phase diagram for a system of spatially separated electrons and holes in coupled quantum wells or graphene double layers is studied in the framework of a BCS-like mean-field approach and a Landau expansion in terms of the pairing order parameter.
Abstract: The phase diagram for a system of spatially separated electrons and holes in coupled quantum wells or graphene double layers is studied in the framework of a BCS-like mean-field approach and a Landau expansion in terms of the pairing order parameter. We find a second order transition between an electron–hole plasma and a BCS phase, as well as a first-order transition between the BCS phase and a bosonic Mott phase of tightly bound electron–hole pairs without phase coherence. The electron–hole plasma exists at low and at high densities for weak interaction, the BCS phase at moderate density and the Mott phase at high density and strong interaction.

10 citations


Network Information
Related Topics (5)
Superconductivity
71.9K papers, 1.3M citations
91% related
Magnetization
107.8K papers, 1.9M citations
89% related
Phase transition
82.8K papers, 1.6M citations
86% related
Ground state
70K papers, 1.5M citations
86% related
Quantum
60K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202271
202165
202064
201968
201871