scispace - formally typeset
Search or ask a question
Topic

Mott transition

About: Mott transition is a research topic. Over the lifetime, 2444 publications have been published within this topic receiving 78401 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a general formalism to investigate quantum spin liquid insulators adjacent to the Mott transition in the triangular lattice Mott-Hubbard system.
Abstract: Motivated by recent experiments on the triangular lattice Mott-Hubbard system $\ensuremath{\kappa}\text{\ensuremath{-}}{(\mathrm{BEDT}\text{\ensuremath{-}}\mathrm{TTF})}_{2}{\mathrm{Cu}}_{2}{(\mathrm{C}\mathrm{N})}_{3}$, we develop a general formalism to investigate quantum spin liquid insulators adjacent to the Mott transition in Hubbard models. This formalism, dubbed the SU(2) slave-rotor formulation, is an extension of the SU(2) gauge theory of the Heisenberg model to the case of the Hubbard model. Furthermore, we propose the honeycomb lattice Hubbard model (at half filling) as a candidate for a spin liquid ground state near the Mott transition; this is an appealing possibility, as this model can be studied via quantum Monte Carlo simulation without a sign problem. The pseudospin symmetry of Hubbard models on bipartite lattices turns out to play a crucial role in our analysis, and we develop our formalism primarily for the case of a bipartite lattice. We also sketch its development for a general Hubbard model. We develop a mean-field theory to describe spin liquids and some competing states, and apply it to the honeycomb lattice. On the insulating side of the Mott transition, we find an SU(2) algebraic spin liquid (ASL), described by gapless $S=1∕2$ Dirac fermions (spinons) coupled to a fluctuating SU(2) gauge field. This result contrasts with that obtained via a U(1) slave-rotor approach, which instead found a U(1) ASL. That formulation does not respect the pseudospin symmetry, and is therefore not correct on the honeycomb lattice. We construct a low-energy effective theory describing the ASL phase, the conducting semimetal phase and the Mott transition between them. This physics can be detected in numerical simulations via the simultaneous presence of substantial antiferromagnetic and valence-bond solid correlations. In the SU(2) ASL, these observables have slowly decaying fluctuations in space and time, described by power laws with the same critical exponent. We recover the results of the U(1) slave-rotor formulation in the presence of a strong breaking of pseudospin symmetry. Our analysis suggests that both a third-neighbor electron hopping, and/or pseudospin-breaking terms such as a nearest-neighbor density interaction, may help to stabilize a spin liquid phase.

60 citations

Journal ArticleDOI
TL;DR: It is argued that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.
Abstract: The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.

60 citations

Journal ArticleDOI
TL;DR: The calculated excitonic peak shows weak carrier-density dependence up to (and even above) the Mott transition density, and considerable optical gain is found demonstrating compellingly the possibility of a one-dimensional quantum wire laser operation.
Abstract: We consider theoretically the formation and stability of quasi-one-dimensional many-body excitons in GaAs quantum wire structures under external photoexcitation conditions by solving the dynamically screened Bethe-Salpeter equation for realistic Coulomb interaction. In agreement with several recent experimental findings the calculated excitonic peak shows weak carrier-density dependence up to (and even above) the Mott transition density, nc approximately 3 x 10(5) cm(-1). Above nc we find considerable optical gain demonstrating compellingly the possibility of a one-dimensional quantum wire laser operation.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral properties of La1-xSrxTiO3, a doped Mott insulator with strong Coulomb correlations, are calculated with the ab initio computational scheme LDA+DMFT(QMC).
Abstract: The spectral properties of La1–xSrxTiO3, a doped Mott insulator with strong Coulomb correlations, are calculated with the ab initio computational scheme LDA+DMFT(QMC). It starts from the non-interacting electronic band structure as calculated by the local density approximation (LDA), and introduces the missing correlations by the dynamical mean-field theory (DMFT), using numerically exact quantum Monte-Carlo (QMC) techniques to solve the resulting self-consistent multi-band single-impurity problem. The results of the LDA+DMFT(QMC) approach for the photoemission spectra of La1–xSrxTiO3 are in good agreement with experiment and represent a considerable qualitative and quantitative improvement on standard LDA calculations.

60 citations

Journal ArticleDOI
TL;DR: This finding unveils the inequivalence of different routes across the Mott transition in V2O3 and relates this effect to the role and occupancy of the a{1g} orbitals.
Abstract: The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping, and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre-K edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a{1g} orbitals. This finding unveils the inequivalence of different routes across the Mott transition in V2O3.

60 citations


Network Information
Related Topics (5)
Superconductivity
71.9K papers, 1.3M citations
91% related
Magnetization
107.8K papers, 1.9M citations
89% related
Phase transition
82.8K papers, 1.6M citations
86% related
Ground state
70K papers, 1.5M citations
86% related
Quantum
60K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202271
202165
202064
201968
201871