scispace - formally typeset
Search or ask a question
Topic

Moving target indication

About: Moving target indication is a research topic. Over the lifetime, 2653 publications have been published within this topic receiving 32435 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated, on the basis of experimental airborne SAR data, that the proposed completely automatic detection scheme with constant false-alarm rates (CFARs) for slow moving targets is capable of detecting slow moving vehicles within severe ground clutter.
Abstract: This paper examines the statistics of the phase and magnitude of multilook synthetic aperture radar (SAR) interferograms toward deployment of along-track interferometry (ATI) for slow ground moving-target indication (GMTI). While the known probability density function (pdf) of the interferogram's phase (derived under the assumption of Gaussian backscatter) is shown to agree almost perfectly for a wide variety of backscatter conditions, the corresponding magnitude's pdf tends to deviate strongly in most cases. Motivated by this discrepancy, a novel distribution is derived for the interferogram's magnitude. This pdf, called the polynomial or p-distribution, matches the real data much more accurately, particularly for heterogeneous composite terrain. For extremely heterogeneous terrain, such as urban areas, both pdfs for interferometric phase and magnitude fail and are extended. Based on these statistics, a completely automatic detection scheme with constant false-alarm rates (CFARs) for slow moving targets is proposed. All involved parameters required to determine the detection thresholds are estimated from the sample data. It is demonstrated, on the basis of experimental airborne SAR data, that this detector is capable of detecting slow moving vehicles within severe ground clutter.

191 citations

Journal ArticleDOI
David Bueno1, Chris Conger1, Alan D. George1, Ian A. Troxel1, Adam Leko1 
TL;DR: Investigation of use of RapidIO, a new high-performance embedded systems interconnect, in addressing issues associated with the high network bandwidth requirements of real-time ground moving target indicator (GMTI), and synthetic aperture Radar (SAR) applications in satellite systems shows it is a promising platform for space-based radar using emerging technology.
Abstract: Space-based radar is a suite of applications that presents many unique system design challenges. In this paper, we investigate use of RapidIO, a new high-performance embedded systems interconnect, in addressing issues associated with the high network bandwidth requirements of real-time ground moving target indicator (GMTI), and synthetic aperture Radar (SAR) applications in satellite systems. Using validated simulation, we study several critical issues related to the RapidIO network and algorithms under study. The results show that RapidIO is a promising platform for space-based radar using emerging technology, providing network bandwidth to enable parallel computation previously unattainable in an embedded satellite system.

174 citations

Journal ArticleDOI
TL;DR: Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level, and are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.
Abstract: Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 line pairs per target (LP/TGT), while at the higher SCRs it was found that a resolution of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.

168 citations

Journal ArticleDOI
TL;DR: An optimum processing method is derived for ground moving-target indication (GMTI) with a multichannel synthetic aperture radar (SAR) system that enables efficient detection of moving objects and accurate estimation of their parameters and does not require any knowledge of the street network.
Abstract: This paper derives an optimum processing method for ground moving-target indication (GMTI) with a multichannel synthetic aperture radar (SAR) system. This method enables efficient detection of moving objects and accurate estimation of their parameters and does not require any knowledge of the street network. The processing is applied to data acquired with the Canadian RADARSAT-2 satellite. Results of the performed trial are compared with the expected GMTI performance of the radar in order to validate the theory.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a wide area traffic monitoring experiment under real conditions, using the scan-MTI mode of the airborne radar sensor PAMIR, which was designed in order to rapidly monitor wide areas for moving targets.
Abstract: This paper presents a wide area traffic monitoring experiment under real conditions, using the scan-MTI mode of the airborne radar sensor PAMIR. This flexible GMTI (Ground Moving Target Indication) mode was designed in order to rapidly monitor wide areas for moving targets. The scan operation enables the detection of targets from different aspect angles with a high revisit rate. The parameters (e.g., radial velocity, signal-to-noise ratio, and positioning accuracy) of the detected vehicles are investigated and compared to the expected theoretical GMTI performance. It will be shown that the scan-MTI mode is particularly adapted to perform an efficient wide-area traffic monitoring.

161 citations


Network Information
Related Topics (5)
Radar
91.6K papers, 1M citations
86% related
Antenna (radio)
208K papers, 1.8M citations
80% related
Signal processing
73.4K papers, 983.5K citations
78% related
MIMO
62.7K papers, 959.1K citations
78% related
Filter (signal processing)
81.4K papers, 1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202272
202131
202052
201966
201859