scispace - formally typeset
Search or ask a question
Topic

Moving target indication

About: Moving target indication is a research topic. Over the lifetime, 2653 publications have been published within this topic receiving 32435 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A sea clutter mitigation method based on sparse optimization is proposed and tested with real radar data collected using a 2.425-GHz netted radar system and it is shown that the extracted signal had a lower false alarm rate compared to the original signal.
Abstract: A sea clutter mitigation method based on sparse optimization is proposed and tested with real radar data collected using a 2.425-GHz netted radar system developed at University College London, London, U.K. The proposed method was able to separate the target returns from the sea clutter returns, thus increasing the signal-to-interference ratio. It is shown that the extracted signal had a lower false alarm rate compared to the original signal.

23 citations

Proceedings ArticleDOI
TL;DR: In this paper, the use of along-track interferometry (ATI) and the displaced phase center antenna (DPCA) is extended to detect and geo-locate all observable moving targets in the Gotcha challenge data, including both the scripted movers and targets of opportunity.
Abstract: In previous work, we presented GMTI detection and geo-location results from the AFRL Gotcha challenge data set, which was collected using a 3-channel, X-band, circular SAR system. These results were compared against GPS truth for a scripted vehicle target. The algorithm used for this analysis is known as ATI/DPCA, which is a hybrid of along-track interferometry (ATI) and the displaced phase center antenna (DPCA) technique. In the present paper the use of ATI/DPCA is extended in order to detect and geo-locate all observable moving targets in the Gotcha challenge data, including both the scripted movers and targets of opportunity. In addition, a computationally efficient SAR imaging technique is presented, appropriate for short integration times, which is used for computing an image of the scene of interest using the same pulses of data used for the GMTI processing. The GMTI detections are then overlaid on the SAR image to produce a simultaneous SAR/GMTI map.

23 citations

Proceedings ArticleDOI
13 Jul 2000
TL;DR: In this article, a Variable Structure Interacting Multiple Model Filter (VS-IMM) is proposed to detect ground moving targets on road segments by adding or deleting road segment models as required.
Abstract: A Ground Moving Target Indicator (GMTI) is developed using a Variable Structure Interacting Multiple Model Filter (VS-IMM). Current trackers use road network database information to either condition GMTI measurements, thereby altering the detection report, or constrain tracks formed on measurements near roads to the road network, thus making a hard decision about the location of the target. The VS-IMM allows for soft decisions about which road a target is possibly located on. The VS- IMM filter developed adaptively adds and deletes road models based upon history of measurement data or extrapolated tracks. As measurements are associated with existing tracks, a search of possible road segment models is performed to either add or delete road segment models as required. As targets on roads approach junctions, additional potential road segment models are added, as the targets pass the intersection only the most likely model is retained. When a target beginst o move into a road segment that is obscured, a model is added that modified the filter estimate and likelihood according to a hidden target model. The VS-IMM Filter includes two models for characterizing temporal vehicle movement. A model with low process noise is used to model targets that are traveling straight and a model with high process noise is used to model highly maneuvering targets. The state estimates from the possible road models are combined with the state estimate of the on-road and off-road multiple temporal models to produce the composite state estimate for the VS-IMM Filter.

23 citations

Patent
07 Jun 1984
TL;DR: In this article, a modified coherent integration is proposed for a pulse Doppler radar system with variable pulse repetition frequency, where the reflected pulses are subject to a simplified vectorial addition by the use of a number of filters.
Abstract: A pulse Doppler radar system with variable pulse repetition frequency has a coherent integrator to which the reflected pulses are supplied in order to avoid deterioration of the indication of a moving target given over-the-horizon reception. The coherent integrator subjects the reflected pulses to a simplified vectorial addition by the use of a number of filters. A precondition for the modified coherent integration is a staggering of the pulse repetition periods such that their sums formed over successive pulse repetition periods are constant, and a phase reference for the signal amplitudes is obtained such that the phase difference is equal to zero after every second pulse repetition.

23 citations


Network Information
Related Topics (5)
Radar
91.6K papers, 1M citations
86% related
Antenna (radio)
208K papers, 1.8M citations
80% related
Signal processing
73.4K papers, 983.5K citations
78% related
MIMO
62.7K papers, 959.1K citations
78% related
Filter (signal processing)
81.4K papers, 1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202272
202131
202052
201966
201859