Topic

# Multi-agent system

About: Multi-agent system is a(n) research topic. Over the lifetime, 27978 publication(s) have been published within this topic receiving 465191 citation(s). The topic is also known as: multi-agent systems & multiagent system.

##### Papers published on a yearly basis

##### Papers

More filters

••

05 Mar 2007TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.

Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

8,696 citations

••

TL;DR: Agent theory is concerned with the question of what an agent is, and the use of mathematical formalisms for representing and reasoning about the properties of agents as discussed by the authors ; agent architectures can be thought of as software engineering models of agents; and agent languages are software systems for programming and experimenting with agents.

Abstract: The concept of an agent has become important in both Artificial Intelligence (AI) and mainstream computer science. Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and construction of intelligent agents. For convenience, we divide these issues into three areas (though as the reader will see, the divisions are at times somewhat arbitrary). Agent theory is concerned with the question of what an agent is, and the use of mathematical formalisms for representing and reasoning about the properties of agents. Agent architectures can be thought of as software engineering models of agents;researchers in this area are primarily concerned with the problem of designing software or hardware systems that will satisfy the properties specified by agent theorists. Finally, agent languages are software systems for programming and experimenting with agents; these languages may embody principles proposed by theorists. The paper is not intended to serve as a tutorial introduction to all the issues mentioned; we hope instead simply to identify the most important issues, and point to work that elaborates on them. The article includes a short review of current and potential applications of agent technology.

6,586 citations

•

12 Jun 2002

TL;DR: A multi-agent system is a distributed computing system with autonomous interacting intelligent agents that coordinate their actions so as to achieve its goal(s) jointly or competitively.

Abstract: The study of multi-agent systems (MAS) focuses on systems in which many intelligent agents interact with each other. These agents are considered to be autonomous entities such as software programs or robots. Their interactions can either be cooperative (for example as in an ant colony) or selfish (as in a free market economy). This book assumes only basic knowledge of algorithms and discrete maths, both of which are taught as standard in the first or second year of computer science degree programmes. A basic knowledge of artificial intelligence would useful to help understand some of the issues, but is not essential. The books main aims are: To introduce the student to the concept of agents and multi-agent systems, and the main applications for which they are appropriate To introduce the main issues surrounding the design of intelligent agents To introduce the main issues surrounding the design of a multi-agent society To introduce a number of typical applications for agent technology

4,040 citations

•

01 Nov 2001

TL;DR: A multi-agent system (MAS) as discussed by the authors is a distributed computing system with autonomous interacting intelligent agents that coordinate their actions so as to achieve its goal(s) jointly or competitively.

Abstract: From the Publisher:
An agent is an entity with domain knowledge, goals and actions. Multi-agent systems are a set of agents which
interact in a common environment. Multi-agent systems deal with the construction of complex systems involving multiple agents and their coordination. A multi-agent system (MAS) is a distributed computing system with
autonomous interacting intelligent agents that coordinate their actions so as to achieve its goal(s) jointly or competitively.

3,003 citations

••

TL;DR: It is observed that more communication does not necessarily lead to faster convergence and may eventually even lead to a loss of convergence, even for the simple models discussed in the present paper.

Abstract: We study a simple but compelling model of network of agents interacting via time-dependent communication links. The model finds application in a variety of fields including synchronization, swarming and distributed decision making. In the model, each agent updates his current state based upon the current information received from neighboring agents. Necessary and/or sufficient conditions for the convergence of the individual agents' states to a common value are presented, thereby extending recent results reported in the literature. The stability analysis is based upon a blend of graph-theoretic and system-theoretic tools with the notion of convexity playing a central role. The analysis is integrated within a formal framework of set-valued Lyapunov theory, which may be of independent interest. Among others, it is observed that more communication does not necessarily lead to faster convergence and may eventually even lead to a loss of convergence, even for the simple models discussed in the present paper.

2,707 citations