scispace - formally typeset
Search or ask a question
Topic

Multi-agent system

About: Multi-agent system is a research topic. Over the lifetime, 27978 publications have been published within this topic receiving 465191 citations. The topic is also known as: multi-agent systems & multiagent system.


Papers
More filters
Journal ArticleDOI
TL;DR: This article provides a conceptual framework through which the core elements and features required by agents engaged in argumentation-based negotiation, as well as the environment that hosts these agents are outlined, and surveys and evaluates existing proposed techniques in the literature.
Abstract: Negotiation is essential in settings where autonomous agents have conflicting interests and a desire to cooperate. For this reason, mechanisms in which agents exchange potential agreements according to various rules of interaction have become very popular in recent years as evident, for example, in the auction and mechanism design community. However, a growing body of research is now emerging which points out limitations in such mechanisms and advocates the idea that agents can increase the likelihood and quality of an agreement by exchanging arguments which influence each others' states. This community further argues that argument exchange is sometimes essential when various assumptions about agent rationality cannot be satisfied. To this end, in this article, we identify the main research motivations and ambitions behind work in the field. We then provide a conceptual framework through which we outline the core elements and features required by agents engaged in argumentation-based negotiation, as well as the environment that hosts these agents. For each of these elements, we survey and evaluate existing proposed techniques in the literature and highlight the major challenges that need to be addressed if argument-based negotiation research is to reach its full potential.

610 citations

01 Jan 2008
TL;DR: The main contribution of this paper is to provide a valid distributed consensus algorithm that overcomes the difficulties caused by unreliable communication channels, such as intermittent information transmission, switching communication topology, and time-varying communication delays, and therefore has its obvious practical applications.
Abstract: The paper studies asynchronous consensus problems of continuous-time multi-agent systems with discontinuous infor- mation transmission. The proposed consensus control strategy is implemented based on the state information of each agent's neighbors at some discrete times. The asynchrony means that each agent's update times, at which the agent adjusts its dynamics, are independent of others'. Furthermore, it is assumed that the communication topology among agents is time-dependent and the information transmission is with bounded time-varying delays. If the union of the communication topology across any time interval with some given length contains a spanning tree, the consensus problem is shown to be solvable. The analysis tool developed in this paper is based on nonnegative matrix theory and graph theory. The main contribution of this paper is to provide a valid distributed consensus algorithm that overcomes the difficulties caused by unreliable communication channels, such as intermit- tent information transmission, switching communication topology, and time-varying communication delays, and therefore has its obvious practical applications. Simulation examples are provided to demonstrate the effectiveness of the theoretical results.

607 citations

Proceedings ArticleDOI
07 Dec 1998
TL;DR: This paper reviews the architecture for a distributed intrusion detection system based on multiple independent entities working collectively, and calls these entities autonomous agents, which solves some of the problems previously mentioned.
Abstract: The intrusion detection system architectures commonly used in commercial and research systems have a number of problems that limit their configurability, scalability or efficiency. The most common shortcoming in the existing architectures is that they are built around a single monolithic entity that does most of the data collection and processing. In this paper, we review our architecture for a distributed intrusion detection system based on multiple independent entities working collectively. We call these entities autonomous agents. This approach solves some of the problems previously mentioned. We present the motivation and description of the approach, partial results obtained from an early prototype, a discussion of design and implementation issues, and directions for future work.

590 citations

Journal ArticleDOI
TL;DR: This paper examines an agent- based approach and its applications in different modes of transportation, including roadway, railway, and air transportation, and addresses some critical issues in developing agent-based traffic control and management systems, such as interoperability, flexibility, and extendibility.
Abstract: The agent computing paradigm is rapidly emerging as one of the powerful technologies for the development of large-scale distributed systems to deal with the uncertainty in a dynamic environment. The domain of traffic and transportation systems is well suited for an agent-based approach because transportation systems are usually geographically distributed in dynamic changing environments. Our literature survey shows that the techniques and methods resulting from the field of agent and multiagent systems have been applied to many aspects of traffic and transportation systems, including modeling and simulation, dynamic routing and congestion management, and intelligent traffic control. This paper examines an agent-based approach and its applications in different modes of transportation, including roadway, railway, and air transportation. This paper also addresses some critical issues in developing agent-based traffic control and management systems, such as interoperability, flexibility, and extendibility. Finally, several future research directions toward the successful deployment of agent technology in traffic and transportation systems are discussed.

590 citations

Journal ArticleDOI
TL;DR: A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning.
Abstract: Reinforcement learning (RL) algorithms have been around for decades and employed to solve various sequential decision-making problems. These algorithms, however, have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This article addresses an important aspect of deep RL related to situations that require multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to the future development of more robust and highly useful multiagent learning methods for solving real-world problems.

589 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
90% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Fuzzy logic
151.2K papers, 2.3M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023536
20221,212
2021849
20201,098
20191,079
20181,105