scispace - formally typeset
Search or ask a question
Topic

Multi-agent system

About: Multi-agent system is a research topic. Over the lifetime, 27978 publications have been published within this topic receiving 465191 citations. The topic is also known as: multi-agent systems & multiagent system.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation runs are conducted to compare the performance of the proposed MAS-based IPPS approaches and that of an evolutionary algorithm and it is shown that the hybrid-based MAS, with the introduction of supervisory control, is able to provide integrated process plan and job shop scheduling solutions with a better global performance.
Abstract: This paper is on the development of an agent-based approach for the dynamic integration of the process planning and scheduling functions. In consideration of the alternative processes and alternative machines for the production of each part, the actual selection of the schedule and allocation of manufacturing resources is achieved through negotiation among the part and machine agents which represent the parts and manufacturing resources, respectively. The agents are to negotiate on a fictitious cost with the adoption of a currency function. Two MAS architectures are evaluated in this paper. One is a simple MAS architecture comprises part agents and machine agents only; the other one involves the addition of a supervisor agent to establish a hybrid-based MAS architecture. A hybrid contract net protocol is developed in the paper to support both types of MAS architectures. This new negotiation protocol enables multi-task many-to-many negotiations, it also incorporates global control into the decentralized negotiation. Simulation runs are conducted to compare the performance of the proposed MAS-based IPPS approaches and that of an evolutionary algorithm. It also shows that the hybrid-based MAS, with the introduction of supervisory control, is able to provide integrated process plan and job shop scheduling solutions with a better global performance.

152 citations

Journal ArticleDOI
TL;DR: This paper proposes an agent modelling framework for the modelling and simulation of such Supply Chains to facilitate their management and shows how this framework can be applied to a case of customer-centric Supply Chain from the golf club industry.

151 citations

Proceedings ArticleDOI
09 Dec 2007
TL;DR: This tutorial describes the theoretical and practical foundations of ABMS, identifies toolkits and methods for developing agent models, and illustrates the development of a simple agent-based model of shopper behavior using spreadsheets.
Abstract: Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of autonomous, interacting agents. ABMS promises to have far-reaching effects on the way that businesses use computers to support decision-making and researchers use electronic laboratories to support their research. Some have gone so far as to contend that ABMS "is a third way of doing science," in addition to traditional deductive and inductive reasoning (Axelrod 1997b). Computational advances have made possible a growing number of agent-based models across a variety of application domains. Applications range from modeling agent behavior in the stock market, supply chains, and consumer markets, to predicting the spread of epidemics, the threat of bio-warfare, and the factors responsible for the fall of ancient civilizations. This tutorial describes the theoretical and practical foundations of ABMS, identifies toolkits and methods for developing agent models, and illustrates the development of a simple agent-based model of shopper behavior using spreadsheets.

150 citations

Journal ArticleDOI
TL;DR: The impact of complexity in validating models of complex systems is explored, introducing changes in the meaning of validity posed by the use to which such models are to be put in terms of their users.
Abstract: A working definition of a complex system is of an entity which is coherent in some recognizable way but whose elements, interactions, and dynamics generate structures admitting surprise and novelty which cannot be defined a priori. Complex systems are therefore more than the sum of their parts, and a consequence of this is that any model of their structure is necessarily incomplete and partial. Models represent simplifications of a system in which salient parts and processes are simulated and given this definition, many models will exist of any particular complex system. In this paper, we explore the impact of complexity in validating models of such systems. We begin with definitions of complexity, complex systems, and models thereof. We identify the key issues as being concerned with the characterization of system equilibrium, system environment, and the way systems and their elements extend and scale. As our perspective on these issues changes, then so do our models and this has implications for their testing and validation. We develop these, introducing changes in the meaning of validity posed by the use to which such models are to be put in terms of their users. We draw these ideas together as conclusions about the limits posed to prediction in complex systems. We illustrate our arguments using various examples from the field of urban systems theory and urban science.

150 citations

01 Oct 2000
TL;DR: This paper contributes a comprehensive presentation of the relevant techniques for solving stochastic games from both the game theory community and reinforcement learning communities, and examines the assumptions and limitations of these algorithms.
Abstract: : Learning behaviors in a multiagent environment are crucial for developing and adapting multiagent systems. Reinforcement learning techniques have addressed this problem for a single agent acting in a stationary environment, which is modeled as a Markov decision process (MDP). But, multiagent environments are inherently non-stationary since the other agents are free to change their behavior as they also learn and adapt. Stochastic games, first studied in the game theory community, are a natural extension of MDPs to include multiple agents. In this paper we contribute a comprehensive presentation of the relevant techniques for solving stochastic games from both the game theory community and reinforcement learning communities. We examine the assumptions and limitations of these algorithms, and identify similarities between these algorithms, single agent reinforcement learners, and basic game theory techniques.

150 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
90% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Fuzzy logic
151.2K papers, 2.3M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023536
20221,212
2021849
20201,098
20191,079
20181,105