Topic

# Multi-objective optimization

About: Multi-objective optimization is a(n) research topic. Over the lifetime, 28329 publication(s) have been published within this topic receiving 743850 citation(s). The topic is also known as: multi-objective programming & vector optimization.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

Abstract: Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

33,299 citations

••

TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.

Abstract: Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN/sup 2/) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed.

30,928 citations

•

01 Jan 2001

TL;DR: This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.

Abstract: From the Publisher:
Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run. · Comprehensive coverage of this growing area of research · Carefully introduces each algorithm with examples and in-depth discussion · Includes many applications to real-world problems, including engineering design and scheduling · Includes discussion of advanced topics and future research · Features exercises and solutions, enabling use as a course text or for self-study · Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.

11,886 citations

••

ETH Zurich

^{1}TL;DR: The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface.

Abstract: Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EAs are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the strength Pareto EA (SPEA), that combines several features of previous multiobjective EAs in a unique manner. It is characterized by (a) storing nondominated solutions externally in a second, continuously updated population, (b) evaluating an individual's fitness dependent on the number of external nondominated points that dominate it, (c) preserving population diversity using the Pareto dominance relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EAs on the 0/1 knapsack problem.

6,717 citations

••

TL;DR: Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously are investigated and suggested to be extended to higher dimensional and more difficult multiobjective problems.

Abstract: In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. Since genetic algorithms (GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias toward some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously. The proof-of-principle results obtained on three problems used by Schaffer and others suggest that the proposed method can be extended to higher dimensional and more difficult multiobjective problems. A number of suggestions for extension and application of the algorithm are also discussed.

5,861 citations