scispace - formally typeset
Search or ask a question
Topic

Multi-objective optimization

About: Multi-objective optimization is a research topic. Over the lifetime, 28329 publications have been published within this topic receiving 743850 citations. The topic is also known as: multi-objective programming & vector optimization.


Papers
More filters
MonographDOI
17 Dec 1999
TL;DR: This paper presents a meta-modelling framework that automates the very labor-intensive and therefore time-heavy and therefore expensive and labor-heavy process of designing and solving optimization problems.
Abstract: Foundations of Genetic Algorithms. Combinatorial Optimization Problems. Multiobjective Optimization Problems. Fuzzy Optimization Problems. Reliability Design Problems. Scheduling Problems. Advanced Transportation Problems. Network Design and Routing. Manufacturing Cell Design. References. Index.

2,348 citations

Book
02 Sep 2008
TL;DR: This chapter discusses the design and exploration of a Surrogate-based kriging model, and some of the techniques used in that process, as well as some new approaches to designing models based on the data presented.
Abstract: Preface. About the Authors. Foreword. Prologue. Part I: Fundamentals. 1. Sampling Plans. 1.1 The 'Curse of Dimensionality' and How to Avoid It. 1.2 Physical versus Computational Experiments. 1.3 Designing Preliminary Experiments (Screening). 1.3.1 Estimating the Distribution of Elementary Effects. 1.4 Designing a Sampling Plan. 1.4.1 Stratification. 1.4.2 Latin Squares and Random Latin Hypercubes. 1.4.3 Space-filling Latin Hypercubes. 1.4.4 Space-filling Subsets. 1.5 A Note on Harmonic Responses. 1.6 Some Pointers for Further Reading. References. 2. Constructing a Surrogate. 2.1 The Modelling Process. 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach. 2.1.2 Stage Two: Parameter Estimation and Training. 2.1.3 Stage Three: Model Testing. 2.2 Polynomial Models. 2.2.1 Example One: Aerofoil Drag. 2.2.2 Example Two: a Multimodal Testcase. 2.2.3 What About the k -variable Case? 2.3 Radial Basis Function Models. 2.3.1 Fitting Noise-Free Data. 2.3.2 Radial Basis Function Models of Noisy Data. 2.4 Kriging. 2.4.1 Building the Kriging Model. 2.4.2 Kriging Prediction. 2.5 Support Vector Regression. 2.5.1 The Support Vector Predictor. 2.5.2 The Kernel Trick. 2.5.3 Finding the Support Vectors. 2.5.4 Finding . 2.5.5 Choosing C and epsilon. 2.5.6 Computing epsilon : v -SVR 71. 2.6 The Big(ger) Picture. References. 3. Exploring and Exploiting a Surrogate. 3.1 Searching the Surrogate. 3.2 Infill Criteria. 3.2.1 Prediction Based Exploitation. 3.2.2 Error Based Exploration. 3.2.3 Balanced Exploitation and Exploration. 3.2.4 Conditional Likelihood Approaches. 3.2.5 Other Methods. 3.3 Managing a Surrogate Based Optimization Process. 3.3.1 Which Surrogate for What Use? 3.3.2 How Many Sample Plan and Infill Points? 3.3.3 Convergence Criteria. 3.3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking. References. Part II: Advanced Concepts. 4. Visualization. 4.1 Matrices of Contour Plots. 4.2 Nested Dimensions. Reference. 5. Constraints. 5.1 Satisfaction of Constraints by Construction. 5.2 Penalty Functions. 5.3 Example Constrained Problem. 5.3.1 Using a Kriging Model of the Constraint Function. 5.3.2 Using a Kriging Model of the Objective Function. 5.4 Expected Improvement Based Approaches. 5.4.1 Expected Improvement With Simple Penalty Function. 5.4.2 Constrained Expected Improvement. 5.5 Missing Data. 5.5.1 Imputing Data for Infeasible Designs. 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement. 5.7 Summary. References. 6. Infill Criteria With Noisy Data. 6.1 Regressing Kriging. 6.2 Searching the Regression Model. 6.2.1 Re-Interpolation. 6.2.2 Re-Interpolation With Conditional Likelihood Approaches. 6.3 A Note on Matrix Ill-Conditioning. 6.4 Summary. References. 7. Exploiting Gradient Information. 7.1 Obtaining Gradients. 7.1.1 Finite Differencing. 7.1.2 Complex Step Approximation. 7.1.3 Adjoint Methods and Algorithmic Differentiation. 7.2 Gradient-enhanced Modelling. 7.3 Hessian-enhanced Modelling. 7.4 Summary. References. 8. Multi-fidelity Analysis. 8.1 Co-Kriging. 8.2 One-variable Demonstration. 8.3 Choosing X c and X e . 8.4 Summary. References. 9. Multiple Design Objectives. 9.1 Pareto Optimization. 9.2 Multi-objective Expected Improvement. 9.3 Design of the Nowacki Cantilever Beam Using Multi-objective, Constrained Expected Improvement. 9.4 Design of a Helical Compression Spring Using Multi-objective, Constrained Expected Improvement. 9.5 Summary. References. Appendix: Example Problems. A.1 One-Variable Test Function. A.2 Branin Test Function. A.3 Aerofoil Design. A.4 The Nowacki Beam. A.5 Multi-objective, Constrained Optimal Design of a Helical Compression Spring. A.6 Novel Passive Vibration Isolator Feasibility. References. Index.

2,335 citations

Journal ArticleDOI
TL;DR: The multi-objective optimal design of a liquid rocket injector is presented to highlight the state of the art and to help guide future efforts.

2,152 citations

Journal ArticleDOI
TL;DR: The Pareto Archived Evolution Strategy (PAES) as discussed by the authors is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors.
Abstract: We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES) We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors (1 + 1)-PAES is intended to be a baseline approach against which more involved methods may be compared It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods We introduce (1 + λ) and (μ | λ) variants of PAES as extensions to the basic algorithm Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions This allows standard statistical analysis to be carried out for comparative purposes Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks

2,140 citations

Journal ArticleDOI
TL;DR: Current multiobjective evolutionary approaches are discussed, ranging from the conventional analytical aggregation of the different objectives into a single function to a number of population-based approaches and the more recent ranking schemes based on the definition of Pareto optimality.
Abstract: The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performance measures with the inherently scalar way in which EAs reward individual performance, that is, number of offspring. In this review, current multiobjective evolutionary approaches are discussed, ranging from the conventional analytical aggregation of the different objectives into a single function to a number of population-based approaches and the more recent ranking schemes based on the definition of Pareto optimality. The sensitivity of different methods to objective scaling and/or possible concavities in the trade-off surface is considered, and related to the (static) fitness landscapes such methods induce on the search space. From the discussion, directions for future research in multiobjective fitness assignment and search strategies are identified, including the incorporation of decision making in the selection procedure, fitness sharing, and adaptive representations.

2,134 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
92% related
Fuzzy logic
151.2K papers, 2.3M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023618
20221,299
20212,051
20201,906
20191,976
20181,775