scispace - formally typeset
Search or ask a question
Topic

Multi-objective optimization

About: Multi-objective optimization is a research topic. Over the lifetime, 28329 publications have been published within this topic receiving 743850 citations. The topic is also known as: multi-objective programming & vector optimization.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an alternate method for finding several Pareto optimal points for a general nonlinear multicriteria optimization problem is proposed, which can handle more than two objectives while retaining the computational efficiency of continuation-type algorithms.
Abstract: This paper proposes an alternate method for finding several Pareto optimal points for a general nonlinear multicriteria optimization problem. Such points collectively capture the trade-off among the various conflicting objectives. It is proved that this method is independent of the relative scales of the functions and is successful in producing an evenly distributed set of points in the Pareto set given an evenly distributed set of parameters, a property which the popular method of minimizing weighted combinations of objective functions lacks. Further, this method can handle more than two objectives while retaining the computational efficiency of continuation-type algorithms. This is an improvement over continuation techniques for tracing the trade-off curve since continuation strategies cannot easily be extended to handle more than two objectives.

2,094 citations

Book
27 Dec 1999
TL;DR: The basic principles of evolutionary multiobjective optimization are discussed from an algorithm design perspective and the focus is on the major issues such as fitness assignment, diversity preservation, and elitism in general rather than on particular algorithms.
Abstract: Multiple, often conflicting objectives arise naturally in most real-world optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolution-based methods have been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separate subdiscipline combining the fields of evolutionary computation and classical multiple criteria decision making. In this paper, the basic principles of evolutionary multiobjective optimization are discussed from an algorithm design perspective. The focus is on the major issues such as fitness assignment, diversity preservation, and elitism in general rather than on particular algorithms. Different techniques to implement these strongly related concepts will be discussed, and further important aspects such as constraint handling and preference articulation are treated as well. Finally, two applications will presented and some recent trends in the field will be outlined.

2,062 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that MOEA/D could significantly outperform NSGA-II on these test instances, and suggests that decomposition based multiobjective evolutionary algorithms are very promising in dealing with complicated PS shapes.
Abstract: Partly due to lack of test problems, the impact of the Pareto set (PS) shapes on the performance of evolutionary algorithms has not yet attracted much attention. This paper introduces a general class of continuous multiobjective optimization test instances with arbitrary prescribed PS shapes, which could be used for studying the ability of multiobjective evolutionary algorithms for dealing with complicated PS shapes. It also proposes a new version of MOEA/D based on differential evolution (DE), i.e., MOEA/D-DE, and compares the proposed algorithm with NSGA-II with the same reproduction operators on the test instances introduced in this paper. The experimental results indicate that MOEA/D could significantly outperform NSGA-II on these test instances. It suggests that decomposition based multiobjective evolutionary algorithms are very promising in dealing with complicated PS shapes.

1,978 citations

Journal ArticleDOI
TL;DR: The results of DA and BDA prove that the proposed algorithms are able to improve the initial random population for a given problem, converge towards the global optimum, and provide very competitive results compared to other well-known algorithms in the literature.
Abstract: A novel swarm intelligence optimization technique is proposed called dragonfly algorithm (DA). The main inspiration of the DA algorithm originates from the static and dynamic swarming behaviours of dragonflies in nature. Two essential phases of optimization, exploration and exploitation, are designed by modelling the social interaction of dragonflies in navigating, searching for foods, and avoiding enemies when swarming dynamically or statistically. The paper also considers the proposal of binary and multi-objective versions of DA called binary DA (BDA) and multi-objective DA (MODA), respectively. The proposed algorithms are benchmarked by several mathematical test functions and one real case study qualitatively and quantitatively. The results of DA and BDA prove that the proposed algorithms are able to improve the initial random population for a given problem, converge towards the global optimum, and provide very competitive results compared to other well-known algorithms in the literature. The results of MODA also show that this algorithm tends to find very accurate approximations of Pareto optimal solutions with high uniform distribution for multi-objective problems. The set of designs obtained for the submarine propeller design problem demonstrate the merits of MODA in solving challenging real problems with unknown true Pareto optimal front as well. Note that the source codes of the DA, BDA, and MODA algorithms are publicly available at http://www.alimirjalili.com/DA.html.

1,897 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
92% related
Fuzzy logic
151.2K papers, 2.3M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023618
20221,299
20212,051
20201,906
20191,976
20181,775