scispace - formally typeset
Search or ask a question
Topic

Multi-swarm optimization

About: Multi-swarm optimization is a research topic. Over the lifetime, 19162 publications have been published within this topic receiving 549725 citations.


Papers
More filters
Proceedings ArticleDOI
10 Nov 2003
TL;DR: A hybrid particle swarm with differential evolution operator, termed DEPSO, which provide the bell-shaped mutations with consensus on the population diversity along with the evolution, while keeping the self-organized particle swarm dynamics, is proposed.
Abstract: A hybrid particle swarm with differential evolution operator, termed DEPSO, which provide the bell-shaped mutations with consensus on the population diversity along with the evolution, while keeping the self-organized particle swarm dynamics, is proposed. Then it is applied to a set of benchmark functions, and the experimental results illustrate its efficiency.

420 citations

Book ChapterDOI
17 Oct 2014
TL;DR: In this paper, a new bio-inspired algorithm, chicken swarm optimization (CSO), is proposed for optimization applications, which mimics the hierarchal order in the chicken swarm and the behaviors of the chicken swarms, including roosters, hens and chicks.
Abstract: A new bio-inspired algorithm, Chicken Swarm Optimization (CSO), is proposed for optimization applications. Mimicking the hierarchal order in the chicken swarm and the behaviors of the chicken swarm, including roosters, hens and chicks, CSO can efficiently extract the chickens’ swarm intelligence to optimize problems. Experiments on twelve benchmark problems and a speed reducer design were conducted to compare the performance of CSO with that of other algorithms. The results show that CSO can achieve good optimization results in terms of both optimization accuracy and robustness. Future researches about CSO are finally suggested.

417 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a series of standard multimodal test functions and more complex ones, such as stair-case and multiple-plateau functions.
Abstract: This paper presents glowworm swarm optimization (GSO), a novel algorithm for the simultaneous computation of multiple optima of multimodal functions. The algorithm shares a few features with some better known swarm intelligence based optimization algorithms, such as ant colony optimization and particle swarm optimization, but with several significant differences. The agents in GSO are thought of as glowworms that carry a luminescence quantity called luciferin along with them. The glowworms encode the fitness of their current locations, evaluated using the objective function, into a luciferin value that they broadcast to their neighbors. The glowworm identifies its neighbors and computes its movements by exploiting an adaptive neighborhood, which is bounded above by its sensor range. Each glowworm selects, using a probabilistic mechanism, a neighbor that has a luciferin value higher than its own and moves toward it. These movements—based only on local information and selective neighbor interactions—enable the swarm of glowworms to partition into disjoint subgroups that converge on multiple optima of a given multimodal function. We provide some theoretical results related to the luciferin update mechanism in order to prove the bounded nature and convergence of luciferin levels of the glowworms. Experimental results demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a series of standard multimodal test functions and more complex ones, such as stair-case and multiple-plateau functions. We also report the results of tests in higher dimensional spaces with a large number of peaks. We address the parameter selection problem by conducting experiments to show that only two parameters need to be selected by the user. Finally, we provide some comparisons of GSO with PSO and an experimental comparison with Niche-PSO, a PSO variant that is designed for the simultaneous computation of multiple optima.

413 citations

Journal ArticleDOI
TL;DR: A new evolutionary approach, particle swarm optimization, is adapted for single-slice 3D-to-3D biomedical image registration and a new hybrid particle swarm technique is proposed that incorporates initial user guidance.
Abstract: Biomedical image registration, or geometric alignment of two-dimensional and/or three-dimensional (3D) image data, is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Registration based on intensity values usually requires optimization of some similarity metric between the images. Local optimization techniques frequently fail because functions of these metrics with respect to transformation parameters are generally nonconvex and irregular and, therefore, global methods are often required. In this paper, a new evolutionary approach, particle swarm optimization, is adapted for single-slice 3D-to-3D biomedical image registration. A new hybrid particle swarm technique is proposed that incorporates initial user guidance. Multimodal registrations with initial orientations far from the ground truth were performed on three volumes from different modalities. Results of optimizing the normalized mutual information similarity metric were compared with various evolutionary strategies. The hybrid particle swarm technique produced more accurate registrations than the evolutionary strategies in many cases, with comparable convergence. These results demonstrate that particle swarm approaches, along with evolutionary techniques and local methods, are useful in image registration, and emphasize the need for hybrid approaches for difficult registration problems.

413 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Support vector machine
73.6K papers, 1.7M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022471
202110
20207
201926
2018171