scispace - formally typeset
Search or ask a question
Topic

Multi-swarm optimization

About: Multi-swarm optimization is a research topic. Over the lifetime, 19162 publications have been published within this topic receiving 549725 citations.


Papers
More filters
Proceedings ArticleDOI
12 May 2002
TL;DR: This paper introduces a proposal to extend the heuristic called "particle swarm optimization" (PSO) to deal with multiobjective optimization problems and it maintains previously found nondominated vectors in a global repository that is later used by other particles to guide their own flight.
Abstract: This paper introduces a proposal to extend the heuristic called "particle swarm optimization" (PSO) to deal with multiobjective optimization problems. Our approach uses the concept of Pareto dominance to determine the flight direction of a particle and it maintains previously found nondominated vectors in a global repository that is later used by other particles to guide their own flight. The approach is validated using several standard test functions from the specialized literature. Our results indicate that our approach is highly competitive with current evolutionary multiobjective optimization techniques.

1,842 citations

Book ChapterDOI
TL;DR: This paper compares two evolutionary computation paradigms: genetic algorithms and particle swarm optimization, and suggests ways in which performance might be improved by incorporating features from one paradigm into the other.
Abstract: This paper compares two evolutionary computation paradigms: genetic algorithms and particle swarm optimization. The operators of each paradigm are reviewed, focusing on how each affects search behavior in the problem space. The goals of the paper are to provide additional insights into how each paradigm works, and to suggest ways in which performance might be improved by incorporating features from one paradigm into the other.

1,661 citations

Journal ArticleDOI
TL;DR: In this paper, a particle swarm optimization (PSO) method for solving the economic dispatch (ED) problem in power systems is proposed, and the experimental results show that the proposed PSO method was indeed capable of obtaining higher quality solutions efficiently in ED problems.
Abstract: This paper proposes a particle swarm optimization (PSO) method for solving the economic dispatch (ED) problem in power systems. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zone, and nonsmooth cost functions are considered using the proposed method in practical generator operation. The feasibility of the proposed method is demonstrated for three different systems, and it is compared with the GA method in terms of the solution quality and computation efficiency. The experimental results show that the proposed PSO method was indeed capable of obtaining higher quality solutions efficiently in ED problems.

1,635 citations

Proceedings ArticleDOI
12 May 2002
TL;DR: The effects of various population topologies on the particle swarm algorithm were systematically investigated and it was discovered that previous assumptions may not have been correct.
Abstract: The effects of various population topologies on the particle swarm algorithm were systematically investigated. Random graphs were generated to specifications, and their performance on several criteria was compared. What makes a good population structure? We discovered that previous assumptions may not have been correct.

1,589 citations

Proceedings ArticleDOI
M. Clerc1
06 Jul 1999
TL;DR: A very simple particle swarm optimization iterative algorithm is presented, with just one equation and one social/confidence parameter, and the results are good enough so that it is certainly worthwhile trying the method on more complex problems.
Abstract: A very simple particle swarm optimization iterative algorithm is presented, with just one equation and one social/confidence parameter. We define a "no-hope" convergence criterion and a "rehope" method so that, from time to time, the swarm re-initializes its position, according to some gradient estimations of the objective function and to the previous re-initialization (it means it has a kind of very rudimentary memory). We then study two different cases, a quite "easy" one (the Alpine function) and a "difficult" one (the Banana function), but both just in dimension two. The process is improved by taking into account the swarm gravity center (the "queen") and the results are good enough so that it is certainly worthwhile trying the method on more complex problems.

1,550 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Support vector machine
73.6K papers, 1.7M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022471
202110
20207
201926
2018171