scispace - formally typeset
Search or ask a question
Topic

Multi-user MIMO

About: Multi-user MIMO is a research topic. Over the lifetime, 10265 publications have been published within this topic receiving 227206 citations. The topic is also known as: multi user mimo & MU-MIMO.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a concatenation rule for the accumulation of MD along a multisection link, including physical origins, models, and regimes of weak and strong coupling.
Abstract: In this paper, we review linear propagation effects in a multimode fiber (MMF) and their impact on performance and complexity in long-haul mode-division multiplexing (MDM) systems. We highlight the many similarities to wireless multi-input multioutput (MIMO) systems. Mode-dependent loss and gain (MDL), analogous to multipath fading, can reduce average channel capacity and cause outage in narrowband systems. Modal dispersion (MD), analogous to multipath delay spread, affects the complexity of MIMO equalization, but has no fundamental effect on performance. Optimal MIMO transmission uses a basis of the Schmidt modes, which may be obtained by a singular value decomposition of the MIMO channel. In the special case of a unitary channel (no MDL), an optimal basis is the set of principal modes, which are eigenvectors of a group delay operator, and are free of signal distortion to first order. We present a concatenation rule for the accumulation of MD along a multisection link. We review mode coupling in MMF, including physical origins, models, and regimes of weak and strong coupling. Strong mode coupling is a key to overcoming challenges in MDM systems. Strong coupling reduces the group delay spread from MD, minimizing the complexity of MIMO signal processing. Likewise, it reduces the variations of loss and gain from MDL, maximizing channel capacity. In the strong-coupling regime, the statistics of MD and MDL depend only on the number of modes and the variance of accumulated group delay or loss/gain, and can be derived from the eigenvalue distributions of certain Gaussian random matrices.

123 citations

Journal ArticleDOI
TL;DR: It is shown that MU-MIMO only offers marginal performance gains with respect to single-user MIMO and calls for improved schemes for the upcoming releases.
Abstract: A relatively recent idea of extending the benefits of MIMO systems to multiuser scenarios seems promising in the context of achieving high data rates envisioned for future cellular standards after 3G (3rd Generation). Although substantial research has been done on the theoretical front, recent focus is on making Multiuser Multiple-Input Multiple-Output (MUMIMO) practically realizable. This paper presents an overview of the different MU-MIMO schemes included/being studied in 3GPP standardization from LTE (long-term evolution) to LTE Advanced. MU-MIMO system concepts and implementation aspects have been studied here. Various low-complexity receiver architectures are investigated, and their performance assessed through link-level simulations. Appealing performance offered by low-complexity interference aware (IA) receivers is notably emphasized. Furthermore, system level simulations for LTE Release 8 are provided. Interestingly, it is shown that MU-MIMO only offers marginal performance gains with respect to single-user MIMO. This arises from the limited MU-MIMO features included in Release 8 and calls for improved schemes for the upcoming releases.

123 citations

Journal ArticleDOI
TL;DR: An antenna grouping based feedback reduction technique for FDD-based massive MIMO systems, dubbed antenna group beamforming (AGB), maps multiple correlated antenna elements to a single representative value using predesigned patterns.
Abstract: Recent works on massive multiple-input multiple-output (MIMO) have shown that a potential breakthrough in capacity gains can be achieved by deploying a very large number of antennas at the base station. In order to achieve the performance that massive MIMO systems promise, accurate transmit-side channel state information (CSI) should be available at the base station. While transmit-side CSI can be obtained by employing channel reciprocity in time division duplexing (TDD) systems, explicit feedback of CSI from the user terminal to the base station is needed for frequency division duplexing (FDD) systems. In this paper, we propose an antenna grouping based feedback reduction technique for FDD-based massive MIMO systems. The proposed algorithm, dubbed antenna group beamforming (AGB), maps multiple correlated antenna elements to a single representative value using predesigned patterns. The proposed method modifies the feedback packet by introducing the concept of a header to select a suitable group pattern and a payload to quantize the reduced dimension channel vector. Simulation results show that the proposed method achieves significant feedback overhead reduction over conventional approach performing the vector quantization of whole channel vector under the same target sum rate requirement.

123 citations

Patent
19 Mar 2007
TL;DR: In this article, the authors classified users into a first group of users to be scheduled individually for MIMO transmission and a second group that can be scheduled together for multi-input multiple-output (MIMO) transmission.
Abstract: Techniques for supporting MIMO transmission are described. Users are classified into a first group of users to be scheduled individually for MIMO transmission and a second group of users that can be scheduled together for MIMO transmission. Transmission resources are allocated to the first and second groups, e.g., based upon various criteria such as the number of users in each group, data requirements of the users, total loading for each group, etc. The transmission resources may be hybrid automatic retransmission (HARQ) interlaces, frequency channels, time frequency resources, etc. The resource allocation may be semi-static. The transmission resources allocated to each group are used for data transmission on the downlink and/or uplink for the users in the group. HARQ with blanking may be used for data transmission for the users in the first group. HARQ without blanking may be used for data transmission for the users in the second group.

121 citations

Journal ArticleDOI
TL;DR: This paper investigates cellular and D2D spectral efficiencies under both perfect and imperfect channel state information (CSI) at the receivers that employ partial zero-forcing, and derives simple analytical lower bounds for both the cellular and underlaid D1D spectral efficiency.
Abstract: In a device-to-device (D2D) underlaid cellular network, the uplink spectrum is reused by the D2D transmissions, causing mutual interference with the ongoing cellular transmissions. Massive MIMO is appealing in such a context as the base station's (BS's) large antenna array can nearly null the D2D-to-BS interference. The multi-user transmission in massive MIMO, however, may lead to increased cellular-to-D2D interference. This paper studies the interplay between massive MIMO and underlaid D2D networking in a multi-cell setting. We investigate cellular and D2D spectral efficiencies under both perfect and imperfect channel state information (CSI) at the receivers that employ partial zero-forcing. Compared to the case without D2D, there is a loss in cellular spectral efficiency due to D2D underlay. With perfect CSI, the loss can be completely overcome if the number of canceled D2D interfering signals is scaled with the number of BS antennas at an arbitrarily slow rate. With imperfect CSI, in addition to pilot contamination, a new asymptotic effect termed underlay contamination arises. In the non-asymptotic regime, simple analytical lower bounds are derived for both the cellular and D2D spectral efficiencies.

121 citations


Network Information
Related Topics (5)
Base station
85.8K papers, 1M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless
133.4K papers, 1.9M citations
93% related
Fading
55.4K papers, 1M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202363
2022122
2021170
2020211
2019234
2018263