Topic
Multibody system
About: Multibody system is a research topic. Over the lifetime, 4135 publications have been published within this topic receiving 58376 citations.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: In this article, the authors propose a floating frame of reference formulation for large deformation problems in linear algebra, based on reference kinematics and finite element formulation for deformable bodies.
Abstract: 1. Introduction 2. Reference kinematics 3. Analytical techniques 4. Mechanics of deformable bodies 5. Floating frame of reference formulation 6. Finite element formulation 7. Large deformation problem Appendix: Linear algebra References Index.
2,027 citations
[...]
21 Aug 1996
TL;DR: Unilateral Contact - Problem Formulation (A. Curnier).- Scalar Force Potentials in Rigid Multibody Systems (Ch. Glocker).
Abstract: THEORY. Multibody Kinematics. Dynamics of Rigid Body Systems. Contact Kinematics. Multiple Contact Configurations. Detachment and Stick-Slip Transitions. Frictionless Impacts by Newton's Law. Impacts with Friction by Poisson's Law. The Corner Law of Contact Dynamics. APPLICATIONS. Applications with Discontinuous Force Laws. Applications with Classical Impact Theory. Applications with Coulomb's Friction Law. Applications with Impacts and Friction. References. Index.
855 citations
[...]
TL;DR: In this article, a continuous contact force model for the impact analysis of a two-particle collision is presented, where a hysteresis damping function is incorporated in the model which represents the dissipated energy in impact.
Abstract: A continuous contact force model for the impact analysis of a two-particle collision is presented. The model uses the general trend of the Hertz contact law. A hysteresis damping function is incorporated in the model which represents the dissipated energy in impact. The parameters in the model are determined, and the validity of the model is established. The model is then generalized to the impact analysis between two bodies of a multibody system. A continuous analysis is performed using the equations of motion of either the multibody system or an equivalent two-particle model of the colliding bodies. For the latter, the concept of effective mass is presented in order to compensate for the effects of joint forces in the system. For illustration, the impact situation between a slider-crank mechanism and another sliding block is considered.
708 citations
[...]
TL;DR: A review of past and recent developments in the dynamics of flexible multibody systems is presented, and some of the basic approaches used in the computer aided kinematic and dynamic analysis of flexible mechanical systems are reviewed to identify future directions in this research area.
Abstract: In this paper, a review of past and recent developments in the dynamics of flexible multibody systems is presented. The objective is to review some of the basic approaches used in the computer aided kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. Among the formulations reviewed in this paper are the floating frame of reference formulation, the finite element incremental methods, large rotation vector formulations, the finite segment method, and the linear theory of elastodynamics. Linearization of the flexible multibody equations that results from the use of the incremental finite element formulations is discussed. Because of space limitations, it is impossible to list all the contributions made in this important area. The reader, however, can find more references by consulting the list of articles and books cited at the end of the paper. Furthermore, the numerical procedures used for solving the differential and algebraic equations of flexible multibody systems are not discussed in this paper since these procedures are similar to the techniques used in rigid body dynamics. More details about these numerical procedures as well as the roots and perspectives of multibody system dynamics are discussed in a companion review by Schiehlen [79]. Future research areas in flexible multibody dynamics are identified as establishing the relationship between different formulations, contact and impact dynamics, control-structure interaction, use of modal identification and experimental methods in flexible multibody simulations, application of flexible multibody techniques to computer graphics, numerical issues, and large deformation problem. Establishing the relationship between different flexible multibody formulations is an important issue since there is a need to clearly define the assumptions and approximations underlying each formulation. This will allow us to establish guidelines and criteria that define the limitations of each approach used in flexible multibody dynamics. This task can now be accomplished by using the “absolute nodal coordinate formulation” which was recently introduced for the large deformation analysis of flexible multibody systems.
702 citations