scispace - formally typeset
Search or ask a question
Topic

Multiferroics

About: Multiferroics is a research topic. Over the lifetime, 3607 publications have been published within this topic receiving 117394 citations.


Papers
More filters
Journal ArticleDOI
14 Mar 2003-Science
TL;DR: Enhanced polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
Abstract: Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.

5,387 citations

Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
TL;DR: Novel device paradigms based on magnetoelectric coupling are discussed, the key scientific challenges in the field are outlined, and high-quality thin-film multiferroics are reviewed.
Abstract: Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.

3,472 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental physics behind the scarcity of ferromagnetic ferroelectric coexistence was explored and the properties of known magnetically ordered ferro-electric materials were examined.
Abstract: Multiferroic magnetoelectrics are materials that are both ferromagnetic and ferroelectric in the same phase. As a result, they have a spontaneous magnetization that can be switched by an applied magnetic field, a spontaneous polarization that can be switched by an applied electric field, and often some coupling between the two. Very few exist in nature or have been synthesized in the laboratory. In this paper, we explore the fundamental physics behind the scarcity of ferromagnetic ferroelectric coexistence. In addition, we examine the properties of some known magnetically ordered ferroelectric materials. We find that, in general, the transition metal d electrons, which are essential for magnetism, reduce the tendency for off-center ferroelectric distortion. Consequently, an additional electronic or structural driving force must be present for ferromagnetism and ferroelectricity to occur simultaneously.

3,146 citations

Journal ArticleDOI
15 Jul 2005-Science
TL;DR: Magnetoelectric multiferroics combine ferromagnetic magnetization and ferroelectricity in the same phase and have tremendous potential for applications, not only because they possess the properties of both parent phenomena, but also because coupling between ferromagnetism and electric polarization can lead to additional novel effects as discussed by the authors.
Abstract: Magnetoelectric multiferroics combine ferromagnetism (a spontaneous magnetization that can be switched by a magnetic field) and ferroelectricity (a spontaneous electric polarization that can be switched by an electric field) in the same phase They have tremendous potential for applications, not only because they possess the properties of both parent phenomena, but also because coupling between ferromagnetism and ferroelectricity can lead to additional novel effects In their Perspective, Spaldin and Fiebig discuss the factors behind the recent resurgence of interest in magnetoelectric multiferroics, describe some exciting results emerging from the current research activities, and point to important challenges and directions for future work

2,523 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
94% related
Thin film
275.5K papers, 4.5M citations
92% related
Amorphous solid
117K papers, 2.2M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023292
2022654
2021255
2020280
2019288
2018275