scispace - formally typeset
Search or ask a question
Topic

Multifractal system

About: Multifractal system is a research topic. Over the lifetime, 7390 publications have been published within this topic receiving 180991 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA).
Abstract: We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series with those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima method, and show that the results are equivalent.

2,967 citations

Book
01 Jan 1989
TL;DR: In this paper, B. Mandelbrot introduced fractal geometry fractal measures methods for determining fractal dimensions local growth models diffusion-limited growth growing self-affine surfaces cluster-cluster aggregation (CCA) computer simulations experiments on Laplacian growth new developments.
Abstract: Foreword, B. Mandelbrot introduction fractal geometry fractal measures methods for determining fractal dimensions local growth models diffusion-limited growth growing self-affine surfaces cluster-cluster aggregation (CCA) computer simulations experiments on Laplacian growth new developments.

1,989 citations

Journal ArticleDOI
TL;DR: Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process, and similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease.
Abstract: According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era.

1,905 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA).
Abstract: We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series to those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima (WTMM) method, and show that the results are equivalent.

1,891 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
83% related
Particle
96.5K papers, 1.9M citations
80% related
Differential equation
88K papers, 2M citations
80% related
Boundary value problem
145.3K papers, 2.7M citations
79% related
Monte Carlo method
95.9K papers, 2.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023231
2022510
2021242
2020250
2019254
2018196