scispace - formally typeset
Search or ask a question

Showing papers on "Multipath propagation published in 2007"


Journal ArticleDOI
TL;DR: The authors provide a comprehensive survey of different modulation recognition techniques in a systematic way, and simulated some major techniques under the same conditions, which allows a fair comparison among different methodologies.
Abstract: The automatic recognition of the modulation format of a detected signal, the intermediate step between signal detection and demodulation, is a major task of an intelligent receiver, with various civilian and military applications. Obviously, with no knowledge of the transmitted data and many unknown parameters at the receiver, such as the signal power, carrier frequency and phase offsets, timing information and so on, blind identification of the modulation is a difficult task. This becomes even more challenging in real-world scenarios with multipath fading, frequency-selective and time-varying channels. With this in mind, the authors provide a comprehensive survey of different modulation recognition techniques in a systematic way. A unified notation is used to bring in together, under the same umbrella, the vast amount of results and classifiers, developed for different modulations. The two general classes of automatic modulation identification algorithms are discussed in detail, which rely on the likelihood function and features of the received signal, respectively. The contributions of numerous articles are summarised in compact forms. This helps the reader to see the main characteristics of each technique. However, in many cases, the results reported in the literature have been obtained under different conditions. So, we have also simulated some major techniques under the same conditions, which allows a fair comparison among different methodologies. Furthermore, new problems that have appeared as a result of emerging wireless technologies are outlined. Finally, open problems and possible directions for future research are briefly discussed.

1,140 citations


Journal ArticleDOI
TL;DR: Multi-user MIMO (MU-MIMO) networks reveal the unique opportunities arising from a joint optimization of antenna combining techniques with resource allocation protocols, and brings robustness with respect to multipath richness, yielding the diversity and multiplexing gains without the need for multiple antenna user terminals.
Abstract: Multi-user MIMO (MU-MIMO) networks reveal the unique opportunities arising from a joint optimization of antenna combining techniques with resource allocation protocols. Furthermore, it brings robustness with respect to multipath richness, allowing for compact antenna spacing at the BS and, crucially, yielding the diversity and multiplexing gains without the need for multiple antenna user terminals. To realize these gains, however, the BS should be informed with the user's channel coefficients, which may limit practical application to TDD or low-mobility settings. To circumvent this problem and reduce feedback load, combining MU-MIMO with opportunistic scheduling seems a promising direction. The success for this type of scheduler is strongly traffic and QoS-dependent, however.

1,097 citations


Book ChapterDOI
01 Jan 2007
TL;DR: In this article, the results of indoor multipath propagation measurements using 10 ns, 1.5 GHz, radar-like pulses are presented for a medium-size office building, where the received signal rays arrive in clusters.
Abstract: The results of indoor multipath propagation measurements using 10 ns, 1.5 GHz, radarlike pulses are presented for a medium-size office building. The observed channel was very slowly time varying, with the delay spread extending over a range up to about 200 ns and rms values of up to about 50 ns. The attenuation varied over a 60 dB dynamic range. A simple statistical multipath model of the indoor radio channel is also presented, which fits our measurements well, and more importantly, appears to be extendable to other buildings. With this model, the received signal rays arrive in clusters. The rays have independent uniform phases, and independent Rayleigh amplitudes with variances that decay exponentially with cluster and ray delays. The clusters, and the rays within the cluster, form Poisson arrival processes with different, but fixed, rates. The clusters are formed by the building superstructure, while the individual rays are formed by objects in the vicinities of the transmitter and the receiver.

930 citations


Patent
08 Jan 2007
TL;DR: Carrier Interferometry (CI) as discussed by the authors provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands.
Abstract: Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.

653 citations


Journal ArticleDOI
TL;DR: The estimation of sparse shallow-water acoustic communication channels and the impact of estimation performance on the equalization of phase coherent communication signals are investigated and a sparse channel estimation technique is developed based on the delay-Doppler-spread function representation of the channel.
Abstract: The estimation of sparse shallow-water acoustic communication channels and the impact of estimation performance on the equalization of phase coherent communication signals are investigated. Given sufficiently wide transmission bandwidth, the impulse response of the shallow-water acoustic channel is often sparse as the multipath arrivals become resolvable. In the presence of significant surface waves, the multipath arrivals associated with surface scattering fluctuate rapidly over time, in the sense that the complex gain, the arrival time, and the Dopplers of each arrival all change dynamically. A sparse channel estimation technique is developed based on the delay-Doppler-spread function representation of the channel. The delay-Doppler-spread function may be considered as a first-order approximation to the rapidly time-varying channel in which each channel component is associated with Doppler shifts that are assumed constant over an averaging interval. The sparse structure of the delay-Doppler-spread function is then exploited by sequentially choosing the dominant components that minimize a least squares error. The advantage of this approach is that it captures both the channel structure as well as its dynamics without the need of explicit dynamic channel modeling. As the symbols are populated with the sample Dopplers, the increase in complexity depends on the channel Doppler spread and can be significant for a severely Doppler-spread channel. Comparison is made between nonsparse recursive least squares (RLS) channel estimation, sparse channel impulse response estimation, and estimation using the proposed approach. The results are demonstrated using experimental data. In training mode, the proposed approach shows a 3-dB reduction in signal prediction error. In decision-directed mode, it improves significantly the robustness of the performance of the channel-estimate-based equalizer against rapid channel fluctuations.

426 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the convergence of UWB and optical fiber distribution techniques, or UWB over fiber, offers the availability of undisrupted service across different networks and eventually achieves high data-rate access at any time and from any place.
Abstract: Ultrawideband (UWB) that is regulated by the Federal Communications Commission (FCC) for short-range high-throughput wireless communication and sensor networks with advantageous features, such as immunity to multipath fading, extremely short time duration, being carrier free, and having low duty cycle, wide bandwidth, and low power spectral density, has been a topic of interest recently. By wireless transmission, UWB communications systems can only operate in a short distance of a few meters to tens of meters. The convergence of UWB and optical fiber distribution techniques, or UWB over fiber, offers the availability of undisrupted service across different networks and eventually achieves high-data-rate access at any time and from any place. To distribute the UWB signals over the optical fiber, it is also desirable that the UWB signals can be generated in the optical domain without having extra electrical-to-optical conversion. In addition, UWB signals that are generated in the optical domain can be easily tailored to have a spectrum that meets the FCC-specified spectral mask. In this paper, techniques to generate UWB signals in the optical domain will be discussed. These techniques are divided into three categories, with the generation of UWB signals based on the following: 1) phase-modulation-to-intensity-modulation conversion; 2) a photonic microwave delay-line filter; and 3) optical spectral shaping and dispersion-induced frequency-to-time mapping. The areas for future development and the challenge of implementation of these techniques for practical applications will also be discussed.

353 citations


Journal ArticleDOI
TL;DR: Extensive simulations show that for different propagation scenarios and UWB communication channels, detectors based on CS channel estimation outperform traditional correlator using just 1/3 of the sampling rate leading thus to a reduced use of analog-to-digital resources in the channel estimation stage.
Abstract: In this paper, ultra-wideband (UWB) channel estimation based on the theory of compressive sensing (CS) is developed. The proposed approach relies on the fact that transmitting an ultra-short pulse through a multipath UWB channel leads to a received UWB signal that can be approximated by a linear combination of a few atoms from a pre-defined dictionary, yielding thus a sparse representation of the received UWB signal. The key in the proposed approach is in the design of a dictionary of parameterized waveforms (atoms) that closely matches the information-carrying pulseshape leading thus to higher energy compaction and sparse representation, and, therefore higher probability for CS reconstruction. Two approaches for UWB channel estimation are developed under a data-aided framework. In the first approach, the CS reconstruction capabilities are exploited to recover the composite pulse-multipath channel from a reduced set of random projections. This reconstructed signal is subsequently used as a referent template in a correlator-based detector. In the second approach, from a set of random projections of the received pilot signal, the Matching Pursuit algorithm is used to identify the strongest atoms in the projected signal that, in turn, are related to the strongest propagation paths that composite the multipath UWB channel. A Rake like receiver uses those atoms as templates for the bank of correlators in the detection stage. The bit error rate performances of the proposed approaches are analyzed and compared to that of traditional correlator-based detector. Extensive simulations show that for different propagation scenarios and UWB communication channels, detectors based on CS channel estimation outperform traditional correlator using just 1/3 of the sampling rate leading thus to a reduced use of analog-to-digital resources in the channel estimation stage.

310 citations


Journal ArticleDOI
06 Dec 2007
TL;DR: In this article, the authors present a review of recent advances in the area of fading channel prediction and demonstrate that reliable fading prediction makes adaptive transmission feasible in diverse wireless communication systems, and they use these criteria in the review and analysis of adaptive transmission aided by fading prediction algorithms.
Abstract: Adaptive transmission methods can potentially aid the achievement of high data rates required for mobile radio multimedia services. To realize this potential, the transmitter needs accurate channel state information (CSI) for the upcoming transmission frame. In most mobile radio systems, the CSI is estimated at the receiver and fed back to the transmitter. However, unless the mobile speed is very low, the estimated CSI cannot be used directly to select the parameters of adaptive transmission systems, since it quickly becomes outdated due to the rapid channel variation caused by multipath fading. To enable adaptive transmission for mobile radio systems, prediction of future fading channel samples is required. Several fundamental issues arise in the design and testing of fading prediction algorithms for adaptive transmission systems. These include complexity, robustness, choice of an appropriate channel model for algorithm validation, channel estimation and noise reduction required for reliable prediction, and design and analysis of adaptive transmission methods aided by fading prediction algorithms. We use these criteria in the review of recent advances in the area of fading channel prediction. We also demonstrate that reliable fading prediction makes adaptive transmission feasible in diverse wireless communication systems.

284 citations


Journal ArticleDOI
TL;DR: It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading and be used in dual-band diversity antenna for mobile terminals.
Abstract: A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.

261 citations


Journal ArticleDOI
TL;DR: It is shown, through computer simulations, that the PAPR of precoded OFDM signals approaches that of single-carrier signals, which permits the reduction of the complexity and cost of the transmitter significantly.
Abstract: Orthogonal-frequency-division-multiplexing (OFDM) techniques allow the transmission of high data rates over broadband radio channels subject to multipath fading without the need for powerful channel equalization. However, they are very sensitive to nonlinear effects due to the high peak-to-average power ratio (PAPR) owned by their transmitted signals. This paper proposes an efficient technique for reducing the PAPR of OFDM signals. The proposed technique is data-independent and, thus, does not require new processing and optimization for each transmitted OFDM block. The reduction in PAPR of the OFDM signal is obtained through a proper selection of a precoding scheme that distributes the power of each modulated symbol over the OFDM block. The obtained results show that this precoding scheme is an attractive solution to the PAPR problem of OFDM signals. It is shown, through computer simulations, that the PAPR of precoded OFDM signals approaches that of single-carrier signals. The good improvement in PAPR given by the present technique permits the reduction of the complexity and cost of the transmitter significantly. The precoding schemes also take advantage of the frequency variations of the communication channel and can provide considerable performance gain in fading-multipath channels

253 citations


Proceedings ArticleDOI
13 Jun 2007
TL;DR: The use of directional antennas and beam steering techniques to improve performance of 802.11 links in the context of communication between amoving vehicle and roadside APs are investigated and a framework called MobiSteer is developed that provides practical approaches to perform beam steering.
Abstract: In this work, we investigate the use of directional antennas and beam steering techniques to improve performance of 802.11 links in the context of communication between amoving vehicle and roadside APs. To this end, we develop a framework called MobiSteer that provides practical approaches to perform beam steering. MobiSteer can operate in two modes - cached mode - where it uses prior radiosurvey data collected during "idle" drives, and online mode, where it uses probing. The goal is to select the best AP and beam combination at each point along the drive given the available information, so that the throughput can be maximized. For the cached mode, an optimal algorithm for AP and beam selection is developed that factors in all overheads.We provide extensive experimental results using a commercially available eight element phased-array antenna. In the experiments, we use controlled scenarios with our own APs, in two different multipath environments, as well as in situ scenarios, where we use APs already deployed in an urban region - to demonstrate the performance advantage of using MobiSteer over using an equivalent omni-directional antenna. We show that MobiSteer improves the connectivity duration as well as PHY-layer data rate due to better SNR provisioning. In particular, MobiSteer improves the throughput in the controlled experiments by a factor of 2 - 4. In in situ experiments, it improves the connectivity duration by more than a factor of 2 and average SNR by about 15 dB.

Journal ArticleDOI
TL;DR: A lower bound on the largest eigenvalue of the Karhunen-Loegraveve (KL) expansion of random multipath fields is established, which quantifies, to some extent, the well-known reduction of multipath richness with reducing the angular power spread of multipATH angular power spectrum.
Abstract: We study the dimensions or degrees of freedom of farfield multipath that is observed in a limited, source-free region of space. The multipath fields are studied as solutions to the wave equation in an infinite-dimensional vector space. We prove two universal upper bounds on the truncation error of fixed and random multipath fields. A direct consequence of the derived bounds is that both fixed and random multipath fields have an effective finite dimension. For circular and spherical spatial regions, we show that this finite dimension is proportional to the radius and area of the region, respectively. We use the Karhunen-Loegraveve (KL) expansion of random multipath fields to quantify the notion of multipath richness. The multipath richness is defined as the number of significant eigenvalues in the KL expansion that achieve 99% of the total multipath energy. We establish a lower bound on the largest eigenvalue. This lower bound quantifies, to some extent, the well-known reduction of multipath richness with reducing the angular power spread of multipath angular power spectrum

Journal ArticleDOI
TL;DR: The results show that the energy arrives in clusters, and that the abundance of metallic scatterers present in the factory hall causes dense multipath scattering, and the number of multipath components required to capture a majority of the energy is quite large.
Abstract: The results of three ultra-wideband (UWB) measurement campaigns conducted in two different industrial environments are presented. A frequency range of 3.1-10.6 or 3.1-5.5 GHz was measured using a vector network analyzer and a virtual array technique enabling the investigation of small-scale statistics. The results show that the energy arrives in clusters, and that the abundance of metallic scatterers present in the factory hall causes dense multipath scattering. The latter produces a small-scale fading that is mostly Rayleigh distributed; the only exception being the delay bin containing the line-of- sight component. The power delay profile can be modeled by a generalized Saleh-Valenzuela model, where different clusters have different ray power decay constants. It is also noted that the number of multipath components required to capture a majority of the energy is quite large. More than a hundred components can be needed to capture 50% of the total available energy.

Journal ArticleDOI
TL;DR: A model for sparse multipath channels is proposed and it is shown that sparse channels afford a new dimension over which capacity can be optimized: the distribution or configuration of the sparse statistically independent degrees of freedom (DoF) in the available spatial signal space dimensions.
Abstract: Emerging advances in reconfigurable radio-frequency (RF) front-ends and antenna arrays are enabling new physical modes for accessing the radio spectrum that extend and complement the notion of waveform diversity in wireless communication systems. However, theory and methods for exploiting the potential of reconfigurable RF front-ends are not fully developed. In this paper, we study the impact of reconfigurable antenna arrays on maximizing the capacity of multiple input multiple output (MIMO) wireless communication links in sparse multipath environments. There is growing experimental evidence that physical wireless channels exhibit a sparse multipath structure, even at relatively low antenna dimensions. We propose a model for sparse multipath channels and show that sparse channels afford a new dimension over which capacity can be optimized: the distribution or configuration of the sparse statistically independent degrees of freedom (DoF) in the available spatial signal space dimensions. Our results show that the configuration of the sparse DoF has a profound impact on capacity and also characterize the optimal capacity-maximizing channel configuration at any operating SNR. We then develop a framework for realizing the optimal channel configuration at any SNR by systematically adapting the antenna spacings at the transmitter and the receiver to the level of sparsity in the physical multipath environment. Surprisingly, three canonical array configurations are sufficient for near-optimum performance over the entire SNR range. In a sparse scattering environment with randomly distributed paths, the capacity gain due to the optimal configuration is directly proportional to the number of antennas. Numerical results based on a realistic physical model are presented to illustrate the implications of our framework

Journal ArticleDOI
TL;DR: The measurement results suggest that the RDS of UWB signals can serve as a robust and computationally efficient indicator of the LOS/NLOS nature of propagation, and demonstrate the efficacy of the discussed NLOS identification method in a location-tracking application based on indoor UWB measurements.
Abstract: Non-line-of-sight (NLOS) propagation can severely degrade the reliability of communication and localisation accuracy in indoor ultra-wideband (UWB) ‘location-aware’ networks. Link adaptation and NLOS bias mitigation techniques have respectively been proposed to alleviate these effects, but implicitly rely on the ability to accurately distinguish between LOS and NLOS propagation scenarios. A statistical NLOS identification technique based on the hypothesis-testing of received signal parameters in UWB propagation channels is discussed. In contrast to narrowband and wideband signals, UWB signals possess higher temporal resolution and robustness to multipath fading. We show that these characteristics result in differences in the statistics of (a) the time-of-arrival (TOA), (b) the received signal strength (RSS) and (c) the root-mean-squared delay spread (RDS) of the received signals, between LOS and NLOS propagation scenarios, which can be exploited for accurate channel identification. We statistically characterise the ability of TOA, RSS and RDS estimates to distinguish between LOS and NLOS propagation based on an extensive indoor measurement campaign. Our measurement results suggest that the RDS of UWB signals can, even in isolation and without complete statistical information, serve as a robust and computationally efficient indicator of the LOS/NLOS nature of propagation. Finally, we demonstrate the efficacy of the discussed NLOS identification method in a location-tracking application based on indoor UWB measurements.

Journal ArticleDOI
TL;DR: This paper determines the fading statistics and directional spread of multipath clusters in the azimuth-of-arrival/azimuth -of-departure (AoA/AoD) domain based on comprehensive indoor MIMO measurements at 5.2 GHz in a cluttered office environment using the SAGE algorithm for parameter estimation.
Abstract: Essential parameters of physical, propagation-based MIMO channel models are the fading statistics and the directional spread of multipath clusters. In this paper we determine these parameters in the azimuth-of-arrival/azimuth-of-departure (AoA/AoD) domain based on comprehensive indoor MIMO measurements at 5.2 GHz in a cluttered office environment using the SAGE algorithm for parameter estimation. Due to cluster identification in AoA/AoD-domain we found a greater number of clusters than those reported in previous publications. Regarding the fading statistics of clusters, so far not studied, strong (obstructed-)line-of-sight clusters show Rician fading, corresponding to few dominant propagation paths, whereas most clusters exhibit Rayleigh fading, corresponding to many paths with approximately equal powers and uncorrelated phases. Root-mean-square cluster azimuth spreads (CASs) were estimated with a novel method by appropriately restricting the support of the cluster azimuth distribution. We found that the estimated CASs are different when seen from transmitter or receiver, i.e. their ranges are from 2deg to 9deg and from 2deg to 7deg at the transmitter side and the receiver side, respectively

Journal ArticleDOI
TL;DR: It is found that for dense channels the performance of the simpler PRake receiver is almost as good as that of the SRake receiver, even for a small number of fingers, and that for a fixed transmitted energy there is an optimum transmission bandwidth.
Abstract: One of the major issues for the design of ultra-wideband (UWB) receivers is the need to recover the signal energy dispersed over many multipath components, while keeping the receiver complexity low. To this aim we consider two schemes for reduced-complexity UWB Rake receivers, both of which combine a subset of the available resolved multipath components. The first method, called partial Rake (PRake), combines theirs/ arriving multipath components. The second is known as selective Rake (SRake) and combines the instantaneously strongest multipath components. We evaluate and compare the link performance of these Rake receivers in different UWB channels, whose models are based on extensive propagation measurements. We quantify the effect of the channel characteristics on the receiver performance, analyzing in particular the influence of small-scale fading statistics. We find that for dense channels the performance of the simpler PRake receiver is almost as good as that of the SRake receiver, even for a small number of fingers. In sparse channels, however, the SRake outperforms the PRake significantly. We also show that for a fixed transmitted energy there is an optimum transmission bandwidth

Journal ArticleDOI
TL;DR: In this paper, a tool called power spectral mapping (PSM) is presented to visually represent the multipath environment of a GPS site using the spectral content (frequency and magnitude) of signal-to-noise ratio (SNR) time series to determine which satellites, and therefore which portions of the antenna environment, contribute significant multipath error and at what frequencies.
Abstract: [1] GPS multipath, where a signal arrives by more than one path, is a source of positioning error which cannot be easily neutralized. Better understanding of the multipath environment, i.e., the direction of and distance to reflecting objects, is important for multipath mitigation during the site construction phase as well as discerning the impact of multipath on positioning estimates for existing sites. This paper presents a tool called power spectral mapping that visually represents the multipath environment of a GPS site. This technique uses the spectral content (frequency and magnitude) of signal-to-noise ratio (SNR) time series to determine which satellites, and therefore which portions of the antenna environment, contribute significant multipath error and at what frequencies. Wavelet analysis is used to extract the time-varying frequency and magnitude content of various multipath constituents, and these data are projected onto a map representing the GPS antenna surroundings. Power spectral map examples from stations with very different multipath environments are presented. The maps are interpreted in terms of potential sources of multipath reflections, and how these multipath signals contribute to positioning error at each station is also assessed.

Journal ArticleDOI
TL;DR: The concept of position-based synchronization is introduced, which states that synchronization parameters can be recovered from a user position estimation and the root mean square error performance of the proposed algorithm is compared to those achieved with state-of-the-art synchronization techniques.
Abstract: In this letter, we obtain the maximum likelihood estimator of position in the framework of global navigation satellite systems. This theoretical result is the basis of a completely different approach to the positioning problem, in contrast to the conventional two-step position estimation, consisting of estimating the synchronization parameters of the in-view satellites and then performing a position estimation with that information. To the authors' knowledge, this is a novel approach that copes with signal fading, and it mitigates multipath and jamming interferences. Besides, the concept of position-based synchronization is introduced, which states that synchronization parameters can be recovered from a user position estimation. We provide computer simulation results showing the robustness of the proposed approach in fading multipath channels. The root mean square error performance of the proposed algorithm is compared to those achieved with state-of-the-art synchronization techniques. A sequential Monte Carlo-based method is used to deal with the multivariate optimization problem resulting from the maximum likelihood solution in an iterative way

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed scheduling solution performs better than common scheduling algorithms, and therefore represents a very efficient low-complexity multipath streaming algorithm, for both stored and live video services.
Abstract: This paper addresses the problem of choosing the best streaming policy for distortion optimal multipath video delivery, under network bandwidth and playback delay constraints. The streaming policy consists in a joint selection of the network path and of the video packets to be transmitted, along with their sending time. A simple streaming model is introduced, which takes into account the video packet importance, and the dependencies between packets. A careful timing analysis allows to compute the quality perceived by the receiver for a constrained playback delay, as a function of the streaming policy. We derive an optimization problem based on a video abstraction model, under the assumption that the server knows, or can predict accurately the state of the network. A detailed analysis of constrained multipath streaming systems provides helpful insights to design an efficient branch and bound algorithm that finds the optimal streaming strategy. This solution allows to bound the performance of any scheduling strategy, but the complexity of the algorithm becomes rapidly intractable. We therefore propose a fast heuristic-based algorithm, built on load-balancing principles. It allows to reach close to optimal performance with a polynomial time complexity. The algorithm is then adapted to live streaming scenarios, where the server has only a partial knowledge of the packet stream, and the channel bandwidth. Extensive simulations show that the proposed algorithm only induces a negligible distortion penalty compared to the optimal strategy, even when the optimization horizon is limited, or the rate estimation is not perfect. Simulation results also demonstrate that the proposed scheduling solution performs better than common scheduling algorithms, and therefore represents a very efficient low-complexity multipath streaming algorithm, for both stored and live video services

Proceedings ArticleDOI
17 Apr 2007
TL;DR: Different adaptive techniques are considered based on both well known approaches and innovative strategies proposed by the authors and the performance comparison allows to understand the particular behaviour of each technique in a practical scenario.
Abstract: In this paper we address the problem of clutter and multipath cancellation in passive radar. Different adaptive techniques are considered based on both well known approaches and innovative strategies proposed by the authors. The performance comparison allows to understand the particular behaviour of each technique in a practical scenario. The proposed innovative strategies are shown to be very appealing solutions for disturbance cancellation in passive radar.

Journal ArticleDOI
TL;DR: A generalized tensor decomposition known as constrained Block-PARAFAC is used and a tensor (3D) model is proposed for the signal received by three types of wireless communication systems, which are multiuser systems subject to frequency-selective multipath and employing multiple receiver antennas.

Journal ArticleDOI
TL;DR: This paper introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite–reflector–antenna geometry and of the reflector material and antenna characteristics and is shown to be able to model most of the main multipath characteristics.
Abstract: Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite–reflector–antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.

Patent
24 Jul 2007
TL;DR: In this article, a variable path simulator is used to simulate a multipath environment with signals appearing to arrive from different angles and different distances in an anechoic chamber with multiple antennas.
Abstract: Embodiments include systems and methods for testing a wireless device, especially one with multiple antennas. In one embodiment, a plurality of antennas are placed around a device under test in an anechoic chamber. Each of a plurality of the antennas is connected to a path of a variable path simulator capable of generating multiple paths between the antennas and external wireless communication test equipment. The variable path simulator introduces a delay spread into each path. In this way, a multipath environment is simulated with signals appearing to arrive from different angles and different distances.

Patent
17 Jan 2007
TL;DR: In this paper, a system and method are provided that can detect any part of a multipath impulse radio signal, including a direct path part and at least one multipath reflection part, and performs a threshold check on the comparison result.
Abstract: A system and method are provided that can detect any part of a multipath impulse radio signal. More specifically, the method compares a template pulse train and the multipath impulse radio signal to obtain a comparison result. The system performs a threshold check on the comparison result. If the comparison result passes the threshold check, the system locks onto any part of the multipath impulse radio signal including a direct path part and at least one multipath reflection part. The system may also perform a quick check, a sychronization check, and/or a command check of the multipath impulse radio signal.

Journal ArticleDOI
TL;DR: A novel super-resolution time delay estimation method that can treat signals with narrowband spectra is proposed and results confirm that the proposed estimators provide better performance than the classical correlation approach and the conventional MUSIC algorithm for separating closely spaced signals with narrower spectra.
Abstract: The super-resolution time delay estimation in multipath environment is very important for many applications. Conventional super-resolution approaches can only deal with signals with wideband and flat spectra. In this paper, we propose a novel super-resolution time delay estimation method that can treat signals with narrowband spectra. In our method, the time delay estimation is first transformed into the frequency domain, in which the problem is converted into the parameter estimation of sinusoidal signals with lowpass envelopes. Then a MUSIC-type algorithm taking account of the envelope variation is applied to achieve the super-resolution estimation. Time delay estimation in active and passive systems are considered. Simulation results confirm that the proposed estimators provide better performance than the classical correlation approach and the conventional MUSIC algorithm for separating closely spaced signals with narrowband spectra.

Proceedings ArticleDOI
24 Jun 2007
TL;DR: This paper investigates the channel capacity of intensity modulated direct detection wireless optical communication systems for an AWGN channel with a limit on the average transmitted optical power and shows that ACO-OFDM makes efficient use of the available power and bandwidth.
Abstract: In this paper we investigate the channel capacity of intensity modulated direct detection (IM/DD) wireless optical communication systems for an AWGN channel with a limit on the average transmitted optical power. It has recently been shown that asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) is more efficient in terms of optical power than conventional optical modulation techniques such as pulse position modulation (PPM). When ACO-OFDM is used, the transmitted signal has a clipped Gaussian probability distribution. We calculate the channel capacity for systems using transmitted signals with exponential and clipped Gaussian distributions, and for an ACO-OFDM system. For practical signal to noise ratios, ACO-OFDM has a slightly lower capacity than the other distributions, due to the correlation between samples caused by the ACO-OFDM modulation process. ACO-OFDM has many practical advantages including its tolerance to multipath distortion. This paper shows that it also makes efficient use of the available power and bandwidth.

Journal ArticleDOI
TL;DR: It is proved that a fixed-step serial search, a form of nonconsecutiveserial search, achieves a near-optimal MAT and that the conventional serial search should be avoided as it results in the maximum MAT.
Abstract: In this paper, we propose a search technique that takes advantage of multipath, which has long been considered deleterious for efficient communication, to aid the sequence acquisition in dense multipath channels. We consider a class of serial-search strategies and use optimization and convexity theories to determine fundamental limits of achievable mean acquisition times (MATs). In particular, we derive closed-form expressions for both the minimum and maximum MATs and the conditions for achieving these limits. We prove that a fixed-step serial search, a form of nonconsecutive serial search, achieves a near-optimal MAT. We also prove that the conventional serial search, in which consecutive cells are tested serially, should be avoided as it results in the maximum MAT. Our results are valid for all signal-to-noise ratio (SNR) values, regardless of the specifics of the detection layer and the fading distributions

Journal ArticleDOI
TL;DR: A multiple model formulation is proposed whereby the changes affecting the navigation system are represented by a discrete valued process, which has the ability to integrate a priori constraints about the propagation environment.
Abstract: Multipath propagation causes major impairments to global positioning system (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this paper, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

Journal ArticleDOI
TL;DR: The statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz found the Nakagami-m cdf beast described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments.
Abstract: This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area, and hallway. Overall, the Nakagami-m cdf beast described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway