scispace - formally typeset
Search or ask a question
Topic

Multiple encryption

About: Multiple encryption is a research topic. Over the lifetime, 5793 publications have been published within this topic receiving 150601 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme that uses the 3D cat map to shuffle the positions of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks.
Abstract: Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme.

1,904 citations

Book
01 Jan 2001
TL;DR: Simplified variants that omit a quadratic function and a fixed rotation in RC6 are examined to clarify their essential contribution to the overall security of RC6.
Abstract: RC6 has been submitted as a candidate for the Advanced Encryption Standard (AES). Two important features of RC6 that were absent from its predecessor RC5 are a quadratic function and a fixed rotation. By examining simplified variants that omit these features we clarify their essential contribution to the overall security of RC6.

1,487 citations

Book ChapterDOI
30 May 2010
TL;DR: In this article, a fully secure attribute-based encryption (ABE) scheme and a predicate encryption (PE) scheme for inner-product predicates were constructed using dual pairing vector spaces.
Abstract: We present two fully secure functional encryption schemes: a fully secure attribute-based encryption (ABE) scheme and a fully secure (attribute-hiding) predicate encryption (PE) scheme for inner-product predicates. In both cases, previous constructions were only proven to be selectively secure. Both results use novel strategies to adapt the dual system encryption methodology introduced by Waters. We construct our ABE scheme in composite order bilinear groups, and prove its security from three static assumptions. Our ABE scheme supports arbitrary monotone access formulas. Our predicate encryption scheme is constructed via a new approach on bilinear pairings using the notion of dual pairing vector spaces proposed by Okamoto and Takashima.

1,363 citations

Book ChapterDOI
18 Aug 2013
TL;DR: In this work, a comparatively simple fully homomorphic encryption (FHE) scheme based on the learning with errors (LWE) problem is described, with a new technique for building FHE schemes called the approximate eigenvector method.
Abstract: We describe a comparatively simple fully homomorphic encryption (FHE) scheme based on the learning with errors (LWE) problem. In previous LWE-based FHE schemes, multiplication is a complicated and expensive step involving “relinearization”. In this work, we propose a new technique for building FHE schemes that we call the approximate eigenvector method. In our scheme, for the most part, homomorphic addition and multiplication are just matrix addition and multiplication. This makes our scheme both asymptotically faster and (we believe) easier to understand.

1,252 citations

Book ChapterDOI
Yuliang Zheng1
17 Aug 1997
TL;DR: Signcryption as discussed by the authors is a new cryptographic primitive which simultaneously fulfills both the functions of digital signature and public key encryption in a logically single step, and with a cost significantly lower than that required by signature-then-encryption.
Abstract: Secure and authenticated message delivery/storage is one of the major aims of computer and communication security research. The current standard method to achieve this aim is “(digital) signature followed by encryption”. In this paper, we address a question on the cost of secure and authenticated message delivery/storage, namely, whether it is possible to transport/store messages of varying length in a secure and authenticated way with an expense less than that required by “signature followed by encryption”. This question seems to have never been addressed in the literature since the invention of public key cryptography. We then present a positive answer to the question. In particular, we discover a new cryptographic primitive termed as “signcryption” which simultaneously fulfills both the functions of digital signature and public key encryption in a logically single step, and with a cost significantly lower than that required by “signature followed by encryption”. For typical security parameters for high level security applications (size of public moduli = 1536 bits), signcryption costs 50% (31%, respectively) less in computation time and 85% (91%, respectively) less in message expansion than does “signature followed by encryption” based on the discrete logarithm problem (factorization problem, respectively).

1,231 citations


Network Information
Related Topics (5)
Encryption
98.3K papers, 1.4M citations
90% related
Authentication
74.7K papers, 867.1K citations
88% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
81% related
Wireless sensor network
142K papers, 2.4M citations
81% related
Server
79.5K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022102
202115
202045
201965
201893