scispace - formally typeset
Search or ask a question
Topic

Multiple kernel learning

About: Multiple kernel learning is a research topic. Over the lifetime, 1630 publications have been published within this topic receiving 56082 citations.


Papers
More filters
Book
01 Jan 2004
TL;DR: This book provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Abstract: Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.

6,050 citations

Journal ArticleDOI
TL;DR: This paper shows how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques and leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Abstract: Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space---classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm---using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

2,419 citations

Journal Article
TL;DR: Overall, using multiple kernels instead of a single one is useful and it is believed that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.
Abstract: In recent years, several methods have been proposed to combine multiple kernels instead of using a single one. These different kernels may correspond to using different notions of similarity or may be using information coming from multiple sources (different representations or different feature subsets). In trying to organize and highlight the similarities and differences between them, we give a taxonomy of and review several multiple kernel learning algorithms. We perform experiments on real data sets for better illustration and comparison of existing algorithms. We see that though there may not be large differences in terms of accuracy, there is difference between them in complexity as given by the number of stored support vectors, the sparsity of the solution as given by the number of used kernels, and training time complexity. We see that overall, using multiple kernels instead of a single one is useful and believe that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.

1,762 citations

Proceedings ArticleDOI
04 Jul 2004
TL;DR: Experimental results are presented that show that the proposed novel dual formulation of the QCQP as a second-order cone programming problem is significantly more efficient than the general-purpose interior point methods available in current optimization toolboxes.
Abstract: While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadratically-constrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points; moreover, the sequential minimal optimization (SMO) techniques that are essential in large-scale implementations of the SVM cannot be applied because the cost function is non-differentiable. We propose a novel dual formulation of the QCQP as a second-order cone programming problem, and show how to exploit the technique of Moreau-Yosida regularization to yield a formulation to which SMO techniques can be applied. We present experimental results that show that our SMO-based algorithm is significantly more efficient than the general-purpose interior point methods available in current optimization toolboxes.

1,625 citations

Journal Article
TL;DR: A Deep Boltzmann Machine is proposed for learning a generative model of multimodal data and it is shown that the model can be used to create fused representations by combining features across modalities, which are useful for classification and information retrieval.
Abstract: Data often consists of multiple diverse modalities For example, images are tagged with textual information and videos are accompanied by audio Each modality is characterized by having distinct statistical properties We propose a Deep Boltzmann Machine for learning a generative model of such multimodal data We show that the model can be used to create fused representations by combining features across modalities These learned representations are useful for classification and information retrieval By sampling from the conditional distributions over each data modality, it is possible to create these representations even when some data modalities are missing We conduct experiments on bimodal image-text and audio-video data The fused representation achieves good classification results on the MIR-Flickr data set matching or outperforming other deep models as well as SVM based models that use Multiple Kernel Learning We further demonstrate that this multimodal model helps classification and retrieval even when only unimodal data is available at test time

1,422 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
89% related
Deep learning
79.8K papers, 2.1M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202244
202172
2020101
2019113
2018114