scispace - formally typeset
Search or ask a question
Topic

Multiple kernel learning

About: Multiple kernel learning is a research topic. Over the lifetime, 1630 publications have been published within this topic receiving 56082 citations.


Papers
More filters
Journal Article
TL;DR: To cope with the ubiquitous problems of subjectivity and inconsistency in multi-media similarity, this work develops graph-based techniques to filter similarity measurements, resulting in a simplified and robust training procedure.
Abstract: In many applications involving multi-media data, the definition of similarity between items is integral to several key tasks, including nearest-neighbor retrieval, classification, and recommendation. Data in such regimes typically exhibits multiple modalities, such as acoustic and visual content of video. Integrating such heterogeneous data to form a holistic similarity space is therefore a key challenge to be overcome in many real-world applications. We present a novel multiple kernel learning technique for integrating heterogeneous data into a single, unified similarity space. Our algorithm learns an optimal ensemble of kernel transformations which conform to measurements of human perceptual similarity, as expressed by relative comparisons. To cope with the ubiquitous problems of subjectivity and inconsistency in multi-media similarity, we develop graph-based techniques to filter similarity measurements, resulting in a simplified and robust training procedure.

155 citations

Journal ArticleDOI
TL;DR: A multiscale deep feature learning method for high-resolution satellite image scene classification by warp the original satellite image into multiple different scales and developing a multiple kernel learning method to automatically learn the optimal combination of such features.
Abstract: In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods.

154 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed method has outstanding performance among other excellent approaches on identifying drug-side effect associations, and compared with many existing methods, the proposed approach achieves better results on three benchmark datasets of drug side-effect associations.

154 citations

Journal ArticleDOI
TL;DR: A novel model which simultaneously performs multi-view clustering task and learns similarity relationships in kernel spaces is proposed in this paper, and Experimental results on benchmark datasets demonstrate that the model outperforms other state-of-the-art multi- view clustering algorithms.

153 citations

Journal ArticleDOI
TL;DR: A novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment and a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically is developed.
Abstract: In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.

152 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
89% related
Deep learning
79.8K papers, 2.1M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202244
202172
2020101
2019113
2018114