scispace - formally typeset
Search or ask a question
Topic

Multiple kernel learning

About: Multiple kernel learning is a research topic. Over the lifetime, 1630 publications have been published within this topic receiving 56082 citations.


Papers
More filters
Posted Content
27 Feb 2010
TL;DR: Improvements in MKL have finally made MKL fit for deployment to practical applications: MKL now has a good chance of improving the accuracy (over a plain sum kernel) at an affordable computational cost.
Abstract: Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations to support interpretability and scalability. Unfortunately, this `1-norm MKL is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures, we generalize MKL to arbitrary norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary norms, like `p-norms with p > 1. Empirically, we demonstrate that the interleaved optimization strategies are much faster compared to the commonly used wrapper approaches. An experiment on controlled artificial data experiment sheds light on the appropriateness of sparse, non-sparse and `∞ MKL in various scenarios. Application of `p-norm MKL to three hard real-world problems from computational biology show that non-sparse MKL achieves accuracies that go beyond the state-of-the-art. We conclude that our improvements finally made MKL fit for deployment to practical applications: MKL now has a good chance of improving the accuracy (over a plain sum kernel) at an affordable computational cost.

40 citations

Journal ArticleDOI
TL;DR: A novel tensorial approach, namely, generalized tensor regression, for hyperspectral image classification is proposed, which can be utilized to capture not only the intrinsic structure of data in a physical sense but also the generalized relationship ofData in a logical sense.
Abstract: In this article, we propose a novel tensorial approach, namely, generalized tensor regression, for hyperspectral image classification. First, a simple and effective classifier, i.e., the ridge regression for multivariate labels, is extended to its tensorial version by taking advantages of tensorial representation. Then, the discrimination information of different modes is exploited to further strengthen the capacity of the model. Moreover, the model can be simplified and solved easily. Different from traditional tensorial methods, the proposed model can be utilized to capture not only the intrinsic structure of data in a physical sense but also the generalized relationship of data in a logical sense. Our proposed approach is shown to be effective for different classification purposes on a series of instantiations. Specifically, our experiment results with hyperspectral images collected by the airborne visible/infrared imaging spectrometer, the reflective optics spectrographic imaging system and the ITRES CASI-1500 demonstrate the effectiveness of the proposed approach as compared to other tensor-based classifiers and multiple kernel learning methods.

40 citations

Proceedings Article
Taiji Suzuki1
16 Jun 2012
TL;DR: A PAC-Bayesian bound is developed for the convergence rate of a Bayesian variant of Multiple Kernel Learning that is an estimation method for the sparse additive model and includes the existing result of Gaussian process as a special case.
Abstract: We develop a PAC-Bayesian bound for the convergence rate of a Bayesian variant of Multiple Kernel Learning (MKL) that is an estimation method for the sparse additive model. Standard analyses for MKL require a strong condition on the design analogous to the restricted eigenvalue condition for the analysis of Lasso and Dantzig selector. In this paper, we apply PAC-Bayesian technique to show that the Bayesian variant of MKL achieves the optimal convergence rate without such strong conditions on the design. Basically our approach is a combination of PAC-Bayes and recently developed theories of non-parametric Gaussian process regressions. Our bound is developed in a fixed design situation. Our analysis includes the existing result of Gaussian process as a special case and the proof is much simpler by virtue of PAC-Bayesian technique. We also give the convergence rate of the Bayesian variant of Group Lasso as a finite dimensional special case.

40 citations

Book ChapterDOI
15 Sep 2008
TL;DR: Retsch et al. as discussed by the authors utilized the multiclass support vector machine (m-SVM) method to directly solve protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems.
Abstract: Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer. Here we utilize the multiclass support vector machine (m-SVM) method to directly solve protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. We further propose a general class of protein sequence kernels which considers all motifs, including motifs with gaps. Instead of heuristically selecting one or a few kernels from this family, we utilize a recent extension of SVMs that optimizes over multiple kernels simultaneously. This way, we automatically search over families of possible amino acid motifs. We compare our automated approach to three other predictors on four different datasets, and show that we perform better than the current state of the art. Further, our method provides some insights as to which sequence motifs are most useful for determining subcellular localization, which are in agreement with biological reasoning. Data files, kernel matrices and open source software are available at http://www.fml.mpg.de/raetsch/projects/protsubloc .

40 citations

Posted Content
TL;DR: This work empirically investigates the best trade-off between sparse and uniformly-weighted multiple kernel learning (MKL) using the elastic-net regularization on real and simulated datasets and finds that the best Trade-off parameter depends not only on the sparsity of the true kernel-weight spectrum but also on the linear dependence among kernels and the number of samples.
Abstract: We empirically investigate the best trade-off between sparse and uniformly-weighted multiple kernel learning (MKL) using the elastic-net regularization on real and simulated datasets. We find that the best trade-off parameter depends not only on the sparsity of the true kernel-weight spectrum but also on the linear dependence among kernels and the number of samples.

40 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
89% related
Deep learning
79.8K papers, 2.1M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202244
202172
2020101
2019113
2018114