scispace - formally typeset
Search or ask a question
Topic

Multiple kernel learning

About: Multiple kernel learning is a research topic. Over the lifetime, 1630 publications have been published within this topic receiving 56082 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results show that the proposed boosting-based multiple kernel learning method is superior to state-of-the-art methods in terms of classification performance while limited samples are used.

28 citations

Journal ArticleDOI
TL;DR: The potential of utilizing affect or emotion recognition research in AEH models is explored and the conceptual Emotion-based E-learning Model (EEM) with the proposed emotion recognition framework is proposed for future work.
Abstract: Adaptive Educational Hypermedia (AEH) e-learning models aim to personalize educational content and learning resources based on the needs of an individual learner. The Adaptive Hypermedia Architecture (AHA) is a specific implementation of the AEH model that exploits the cognitive characteristics of learner feedback to adapt resources accordingly. However, beside cognitive feedback, the learning realm generally includes both the affective and emotional feedback of the learner, which is often neglected in the design of e-learning models. This article aims to explore the potential of utilizing affect or emotion recognition research in AEH models. The framework is referred to as Multiple Kernel Learning Decision Tree Weighted Kernel Alignment (MKLDT-WFA). The MKLDT-WFA has two merits over classical MKL. First, the WFA component only preserves the relevant kernel weights to reduce redundancy and improve the discrimination for emotion classes. Second, training via the decision tree reduces the misclassification issues associated with the SimpleMKL. The proposed work has been evaluated on different emotion datasets and the results confirm the good performances. Finally, the conceptual Emotion-based E-learning Model (EEM) with the proposed emotion recognition framework is proposed for future work.

28 citations

Journal ArticleDOI
TL;DR: This study addressed the problem of separating early‐ and late‐stage cancers from each other using their gene expression profiles and proposed to use a multiple kernel learning (MKL) formulation that makes use of pathways/gene sets to obtain satisfactory/improved predictive performance and identify biological mechanisms that might have an effect in cancer progression.
Abstract: Motivation Identifying molecular mechanisms that drive cancers from early to late stages is highly important to develop new preventive and therapeutic strategies. Standard machine learning algorithms could be used to discriminate early- and late-stage cancers from each other using their genomic characterizations. Even though these algorithms would get satisfactory predictive performance, their knowledge extraction capability would be quite restricted due to highly correlated nature of genomic data. That is why we need algorithms that can also extract relevant information about these biological mechanisms using our prior knowledge about pathways/gene sets. Results In this study, we addressed the problem of separating early- and late-stage cancers from each other using their gene expression profiles. We proposed to use a multiple kernel learning (MKL) formulation that makes use of pathways/gene sets (i) to obtain satisfactory/improved predictive performance and (ii) to identify biological mechanisms that might have an effect in cancer progression. We extensively compared our proposed MKL on gene sets algorithm against two standard machine learning algorithms, namely, random forests and support vector machines, on 20 diseases from the Cancer Genome Atlas cohorts for two different sets of experiments. Our method obtained statistically significantly better or comparable predictive performance on most of the datasets using significantly fewer gene expression features. We also showed that our algorithm was able to extract meaningful and disease-specific information that gives clues about the progression mechanism. Availability and implementation Our implementations of support vector machine and multiple kernel learning algorithms in R are available at https://github.com/mehmetgonen/gsbc together with the scripts that replicate the reported experiments.

27 citations

Journal ArticleDOI
TL;DR: The utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda is illustrated and a novel, automated feature grouping method is proposed that achieves a high classification accuracy for various MKL methods.
Abstract: Unmanned Aerial Vehicles (UAVs) are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL) for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM). A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

27 citations

Book ChapterDOI
08 Nov 2010
TL;DR: This paper devise an algorithm called Multiple Kernel Boosting (MKB), which aims to find an optimal combination of many single kernel SVMs focusing on different features and kernels by boosting technique, and applies Locality Affinity Constraints (LAC) to each selected SVM.
Abstract: In this paper, we incorporate the concept of Multiple Kernel Learning (MKL) algorithm, which is used in object categorization, into human tracking field. For efficiency, we devise an algorithm called Multiple Kernel Boosting (MKB), instead of directly adopting MKL. MKB aims to find an optimal combination of many single kernel SVMs focusing on different features and kernels by boosting technique. Besides, we apply Locality Affinity Constraints (LAC) to each selected SVM. LAC is computed from the distribution of support vectors of respective SVM, recording the underlying locality of training data. An update scheme to reselect good SVMs, adjust their weights and recalculate LAC is also included. Experiments on standard and our own testing sequences show that our MKB tracking outperforms some other state-of-the-art algorithms in handling various conditions.

27 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
89% related
Deep learning
79.8K papers, 2.1M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202244
202172
2020101
2019113
2018114