scispace - formally typeset
Search or ask a question
Topic

Multiple-scale analysis

About: Multiple-scale analysis is a research topic. Over the lifetime, 1360 publications have been published within this topic receiving 27530 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the axial speed of an axially accelerating string guided by a non-linear elastic foundation is analyzed analytically and the stability of the system is constructed.
Abstract: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation are studied analytically. The axial speed, as the source of parametric vibrations, is assumed to involve a mean speed, along with small harmonic variations. The method of multiple scales is applied to the governing non-linear equation of motion and then the natural frequencies and mode shape equations of the system are derived using the equation of order one, and satisfying the compatibility conditions. Using the equation of order epsilon, the solvability conditions are obtained for three distinct cases of axial acceleration frequency. For all cases, the stability areas of system are constructed analytically. Finally, some numerical simulations are presented to highlight the effects of system parameters on vibration, natural frequencies, frequency–response curves, stability, and bifurcation points of the system.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamical response of axially moving, partially supported, stretched viscoelastic belts is investigated analytically in the Kelvin-Voigt model, where the tension in the belt span is assumed to vary periodically over a mean value (as it occurs in real mechanisms).
Abstract: The dynamical response of axially moving, partially supported, stretched viscoelastic belts is investigated analytically in this paper. The Kelvin–Voigt viscoelastic material model is considered and material, not partial, time derivative is employed in the viscoelastic constitutive relation. The string is considered as a three part system: one part resting on a nonlinear foundation and two that are free to vibrate. The tension in the belt span is assumed to vary periodically over a mean value (as it occurs in real mechanisms), and the corresponding equation of motion is derived by applying Newton’s second law of motion for an infinitesimal element of the string. The method of multiple scales is applied to the governing equation of motion, and nonlinear natural frequencies and complex eigenfunctions of the system are obtained analytically. Regarding the resonance case, the limit-cycle of response is formulated analytically. Finally, the effects of system parameters such as axial speed, excitation characteristics, viscousity and foundation modulus on the dynamical response, natural frequencies and bifurcation points of system are presented.

80 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered a three-part system, where one is subjected to an elastic foundation, and two are free to vibrate, and the equations of orders one and epsilon were derived using the method of multiple scales.

80 citations

Journal ArticleDOI
TL;DR: In this paper, a non-linear vibration of viscoelastic pipes conveying fluid around curved equilibrium due to the supercritical flow is investigated with the emphasis on steady-state response in external and internal resonances.
Abstract: Non-linear vibration of viscoelastic pipes conveying fluid around curved equilibrium due to the supercritical flow is investigated with the emphasis on steady-state response in external and internal resonances. The governing equation, a non-linear integro-partial-differential equation, is truncated into a perturbed gyroscopic system via the Galerkin method. The method of multiple scales is applied to establish the solvability condition in the first primary resonance and the 2:1 internal resonance. The approximate analytical expressions are derived for the frequency–amplitude curves of the steady-state responses. The stabilities of the steady-state responses are determined. The generation and the vanishing of a double-jumping phenomenon on the frequency–amplitude curves are examined. The analytical results are supported by the numerical integration results.

79 citations

Journal ArticleDOI
TL;DR: In this article, the dynamic response of parametrically excited, axially moving viscoelastic belts is investigated and it is found that this added steady state dissipation greatly affects both the existence and amplitudes of nontrivial limit cycles.
Abstract: The dynamic response of parametrically excited, axially moving viscoelastic belts is investigated in this paper. Results are compared to previous work in which the partial, not material, time derivative was used in the viscoelastic constitutive relation. It is found that this added steady state dissipation greatly affects both the existence and amplitudes of nontrivial limit cycles. The discrepancy increases with increasing translation speed. To limit the comparison to the additional physics included in the model, the solution procedure of Zhang and Zu [1,2], who applied the method of multiple scales to the governing equations prior to discretization, is retained. The excitation here is provided by physically stretching the belt. In this case, viscoelastic behavior and excitation frequency also affects the amplitude of the tension fluctuations.

79 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Partial differential equation
70.8K papers, 1.6M citations
79% related
Reynolds number
68.4K papers, 1.6M citations
79% related
Differential equation
88K papers, 2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202237
202150
202042
201972
201851