scispace - formally typeset
Search or ask a question
Topic

Multiple-scale analysis

About: Multiple-scale analysis is a research topic. Over the lifetime, 1360 publications have been published within this topic receiving 27530 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, nonlinear vibrations of a general model of continuous system are considered. The model consists of arbitrary linear and cubic operators, and the equation of motion is solved by the method of multiple scales (a perturbation method).

35 citations

Journal ArticleDOI
TL;DR: In this paper, the generalized Hamilton principle and the Kelvin viscoelastic constitutive relation are applied to establish the governing equations and associated boundary conditions for coupled planar motion of the beam.
Abstract: In this paper, the parametric stability of axially accelerating viscoelastic beams is revisited. The effects of the longitudinally varying tension due to the axial acceleration are highlighted, while the tension was approximately assumed to be longitudinally uniform in previous studies. The dependence of the tension on the finite support rigidity is also considered. The generalized Hamilton principle and the Kelvin viscoelastic constitutive relation are applied to establish the governing equations and the associated boundary conditions for coupled planar motion of the beam. The governing equations are linearized into the governing equation in the transverse direction and the expression of the longitudinally varying tension. The method of multiple scales is employed to analyze the parametric stability of transverse motion. The stability boundaries are derived from the solvability conditions and the Routh-Hurwitz criterion for principal and sum resonances. In terms of stability boundaries, the governing equations with or without the longitudinal variance of tension are compared and the effects of the finite support rigidity are also examined. Some numerical examples are presented to demonstrate the effects of the stiffness, the viscosity, and the mean axial speed on the stability boundaries. The differential quadrature scheme is developed to numerically solve the governing equation, and the computational results confirm the outcomes of the method of multiple scales. [DOI: 10.1115/1.4004672]

35 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method averaging, and two newly developed methods, energy analysis and the pseudo-oscillator analysis.
Abstract: This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.

35 citations

Journal ArticleDOI
TL;DR: In this article, a model of parametrically excited two-degree-of-freedom nonlinear system with the quadratic and cubic nonlinearities is established to explore the periodic and quasiperiodic motions as well as the bifurcations and chaotic dynamics of the system.
Abstract: In this paper, we investigate transient and steady nonlinear dynamics in rotor-active magnetic bearings (AMBs) system with 8-pole legs and the time-varying stiffness. The model of parametrically excited two-degree-of-freedom nonlinear system with the quadratic and cubic nonlinearities is established to explore the periodic and quasiperiodic motions as well as the bifurcations and chaotic dynamics of the system. The method of multiple scales is used to obtain the averaged equations in the case of primary parameter resonance and 1/2 subharmonic resonance. Numerical approach is applied to the averaged equations to find the periodic, quasiperiodic solutions and local bifurcations. It is found that there exist 2-period, 3-period, 4-period, 5-period, multi-period and quasiperiodic solutions in the rotor-AMBs system with 8-pole legs and the time-varying stiffness. The catastrophic phenomena for the amplitude of transient nonlinear oscillations are first observed in the rotor-AMBs system with 8-pole legs and the time-varying stiffness. The procedures of motion from the transient state chaotic motion to the steady state periodic and quasiperiodic motions are also found. The results obtained here show that there exists the ability of auto-controlling transient state chaos to the steady state periodic and quasiperiodic motions in the rotor-AMBs system with 8-pole legs and the time-varying stiffness.

34 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous model and nonlinear dynamic responses of a circular mesh antenna subjected to the thermal excitation in the space environment are investigated for the first time, where a continuum cantilever circular cylindrical short shell, which is clamped at one side of the shell along the axial direction, is proposed to take place of the circular antenna composed of the repetitive beamlike lattice by the principle of equivalent effect.

34 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Partial differential equation
70.8K papers, 1.6M citations
79% related
Reynolds number
68.4K papers, 1.6M citations
79% related
Differential equation
88K papers, 2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202237
202150
202042
201972
201851