scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Book
01 Jan 1990
TL;DR: Basic Methodology: M.A. Innis and D.F. Frohman, RACE: Rapid Amplification of cDNA Ends, and RNA Processing: Apo-B.R. Kwok, Procedure to Minimuze PCR-Product Carry-Over.
Abstract: Basic Methodology: M.A. Innis and D.H. Gelfand, Optimization of PCRs. R.K. Saiki, Amplification of Genomic DNA. E.S. Kawasaki, Amplification of RNA. M.A. Frohman, RACE: Rapid Amplification of cDNA Ends. T. Compton, Degenerate Primers for DNA Amplification. C.C. Lee and C.T. Caskey, cDNA Cloning Using Degenerate Primers. M.A. Innis, PCR with 7-Deaza-2~b7-Deoxyguanosine Triphosphate. G. Gilliland, S. Perrin, and H.F. Bunn, Competitive PCR for Quantitation of mRNA. A.M. Wang and D.F. Mark, Quantitative PCR. P.C. McCabe, Production of Single-Stranded DNA by Asymmetric PCR. S.J. Scharf, Cloning with PCR. U. Landegren, R. Kaiser, and L. Hood, Oligonucleotide Ligation Assay. C. Levenson and C.-A. Chang, Nonisotopically Labeled Probes and Primers. Y-M.D. Lo, W.Z. Mehal, and K.A. Fleming, Incorporation of Biotinylated dUTP. R. Helmuth, Nonisotopic Detection of PCR Products. D.H. Gelfand and T.J. White, Thermostable DNA Polymerases. S. Kwok, Procedure to Minimuze PCR-Product Carry-Over. E.S. Kawasaki, Sample Preparation from Blood, Cells, and Other Fluids. D.K. Wright and M.M. Manos, Sample Preparation from Paraffin-Embedded Tissues. S. P~ada~adabo, Amplifying Ancient DNA. Research Applications. M.J. Holland and M.A. Innis, In Vitro Transcription of PCR Templates. R. Higuchi, Recombinant PCR. B. Krummel, DNase I Footprinting. M.A.D. Brow, Sequencing with Taq DNA Polymerase. S.S. Sommer, G. Sarkar, D.D. Koeberl, C.D.K. Bottema, J.-M. Buerstedde, D.B. Schowalter, and J.D. Cassady, Direct Sequencing with the Aid of Phage Promoters. V.C. Sheffield, D.R. Cox, and R.M. Myers, Identifying DNA Polymorphisms by Denaturing Gradient Gel Electrophoresis. H. Ochman, M.M. Medhora, D. Garza, and D.L. Hartl, Amplification of Flanking Sequences by Inverse PCR. M.A. Frohman and G.R. Martin, Detection of Homologous Recombinants. L.M. Powell, RNA Processing: Apo-B. T.R. Gingeras, G.R. Davis, K.M. Whitfield, H.L. Chappelle, L.J. DiMichele, and D.Y. Kwoh, A Transcription-Based Amplification System. K.D. Friedman, N.L. Rosen, P.J. Newman, and R.R. Montgomery, Screening of ~glgt11 Libraries. Genetics and Evolution. H.A. Erlich and T.L. Bugawan, HLA DNA Typing. J.S. Chamberlain, R.A. Gibbs, J.E. Ranier, and C.T. Caskey, Multiplex PCR for the Diagnosis of Duchenne Muscular Dystrophy. S.B. Lee and J.W. Taylor, Isolation of DNA from Fungal Mtcelia and Single Spores. S.C. Kogan and J. Gitschier, Genetic Prediction of Hemophilia A. U. Gyllensten, Haplotype Analysis from Single Sperm or Diploid Cells. M.L. Sogin, Amplification of Ribosomal RNA Genes for Molecular Evolution Studies. T.J. White, T. Bruns, S. Lee, and J. Taylor, Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Diagnostics and Forensics. G.D. Ehrlich, S. Greenberg, and M.A. Abbott, Detection of Human T-Cell Lymphoma/Leukemia Viruses. D.E. Kellogg and S. Kwok, Detection of Human Immunodeficiency Virus. I. Baginski, A. Ferrie, R. Watson, and D. Mack, Detection of Hepatitis B Virus. Y. Ting and M.M. Manos, Detection and Typing of Genital Human Papillomaviruses. D. Shibata, Detection of Human Cytomegalovirus. H.A. Rotbart, PCR Amplification of Enteroviruses. D. Mack, O.-S. Kwon, and F. Faloona, Novel Viruses. J. Lyons, Analysis of ras Gene Point Mutations by PCR and Olgonucleotide Hybridization. M. Crescenzi, B-Cell Lymphoma: t(14 18) Chromosome Rearrangement. R.M. Atlas and A.K. Bej, Detecting Bacterial Pathogens in Environmental Water Samples by Using PCR and Gene Probes. S.-H. Park, PCR in the Diagnosis of Retinoblastoma. C. Orrego and M.C. King, Determination of Familial Relationships. Instrumentation and Supplies: R. Watson, PCR in a Teacup A Simple and Inexpensive Method for Thermocycling PCRs. P. Denton and H. Reisner, A Low-Cost Air-Driven Cycling Oven. N.C.P. Cross, N.S. Foulkes, D. Chappel, J. McDonnell, and L. Luzzatto, Modification of a Histokinette for Use as an Automated PCR Machine. C. Orrego, Organizing a Laboratory for PCR Work. R. Madej and S. Scharf, Basic Equipment and Supplies. Index.

13,139 citations

Journal ArticleDOI
14 Aug 1992-Science
TL;DR: A method to separate and clone individual messenger RNAs (mRNAs) by means of the polymerase chain reaction using a set of oligonucleotide primers, one being anchored to the polyadenylate tail of a subset of mRNAs, the other being short and arbitrary in sequence so that it anneals at different positions relative to the first primer.
Abstract: Effective methods are needed to identify and isolate those genes that are differentially expressed in various cells or under altered conditions. This report describes a method to separate and clone individual messenger RNAs (mRNAs) by means of the polymerase chain reaction. The key element is to use a set of oligonucleotide primers, one being anchored to the polyadenylate tail of a subset of mRNAs, the other being short and arbitrary in sequence so that it anneals at different positions relative to the first primer. The mRNA subpopulations defined by these primer pairs were amplified after reverse transcription and resolved on a DNA sequencing gel. When multiple primer sets were used, reproducible patterns of amplified complementary DNA fragments were obtained that showed strong dependence on sequence specificity of either primer.

5,254 citations

Journal ArticleDOI
TL;DR: An alternative method for the synthesis of specific DNA sequences is explored that involves the reciprocal interaction of two oligonucleotides and the DNA polymerase extension products whose synthesis they prime, when they are hybridized to different strands of a DNA template in a relative orientation such that their extension products overlap.
Abstract: The discovery of specific restriction endonucleases (Smith and Wilcox 1970) made possible the isolation of discrete molecular fragments of naturally occurring DNA for the first time. This capability was crucial to the development of molecular cloning (Cohen et al. 1973); and the combination of molecular cloning and endonuclease restriction allowed the synthesis and isolation of any naturally occurring DNA sequence that could be cloned into a useful vector and, on the basis of flanking restriction sites, excised from it. The availability of a large variety of restriction enzymes (Roberts 1985) has significantly extended the utility of these methods. The de novo organic synthesis of oligonucleotides and the development of methods for their assembly into long double-stranded DNA molecules (Davies and Gassen 1983) have removed, at least theoretically, the minor limitations imposed by the availability of natural sequences with fortuitously unique flanking restriction sites. However, de novo synthesis, even with automated equipment, is not easy; it is often fraught with peril due to the inevitable indelicacy of chemical reagents (Urdea et al. 1985; Watt et al. 1985; Mullenbach et al. 1986), and it is not capable of producing, intentionally, a sequence that is not yet fully known. We have been exploring an alternative method for the synthesis of specific DNA sequences (Fig. 1). It involves the reciprocal interaction of two oligonucleotides and the DNA polymerase extension products whose synthesis they prime, when they are hybridized to different strands of a DNA template in a relative orientation such that their extension products overlap. The method consists of repetitive cycles of denaturation, hybridization, and polymerase extension and seems not a little boring until the realization occurs that this procedure is catalyzing a doubling with each cycle in the amount of the fragment defined by the positions of the 5' ends of the two primers on the template DNA, that this fragment is therefore increasing in concentration exponentially, and that the process can be continued for many cycles and is inherently very specific. The original template DNA molecule could have been a relatively small amount of the sequence to be synthesized (in a pure form and as a discrete molecule) or it could have been the same sequence embedded in a much larger molecule in a complex mixture as in the case of a fragment of a single-copy gene in whole human DNA. It could also have been a single-stranded DNA molecule or, with a minor modification in the technique, it could have been an RNA molecule. In any case, the product of the reaction will be a discrete double-stranded DNA molecule with termini corresponding to the 5' ends of the oligonucleotides employed. We have called this process polymerase chain reaction or (inevitably) PCR. Several embodiments have been devised that enable one not only to extract a specific sequence from a complex template and amplify it, but also to increase the inherent specificity of this process by using nested primer sets, or to append sequence information to one or both ends of the sequence as it is being amplified, or to construct a sequence entirely from synthetic fragments.

3,721 citations

Journal ArticleDOI
01 Nov 1989-Genomics
TL;DR: It is found that most single base changes in up to 200-base fragments could be detected as mobility shifts and the interspersed repetitive sequences of human, Alu repeats are highly polymorphic.

3,625 citations

Journal Article
TL;DR: It is reported that specific human (dC-dA)n.(dG-dT)n blocks are polymorphic in length among individuals and therefore represent a vast new pool of potential genetic markers.
Abstract: Interspersed DNA elements of the form (dC-dA)n.(dG-dT)n constitute one of the most abundant human repetitive DNA families. We report that specific human (dC-dA)n.(dG-dT)n blocks are polymorphic in length among individuals and therefore represent a vast new pool of potential genetic markers. Comparison of sequences from the literature for (dC-dA)n.(dG-dT)n blocks cloned two or more times revealed length polymorphisms in seven of eight cases. Variations in the lengths of 10 (dC-dA)n.(dG-dT)n blocks were directly demonstrated by amplifying the DNA within and immediately flanking the repeat blocks by using the polymerase chain reaction and then resolving the amplified DNA on polyacrylamide DNA sequencing gels. Use of the polymerase chain reaction to detect DNA polymorphisms offers improved sensitivity and speed compared with standard blotting and hybridization.

3,457 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220