scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The multiplex PCR assays do not require fluorescence-labeling or post-PCR enzyme digestion, providing a simple, fast and reliable method for the identification of oysters from China.
Abstract: Genetic markers are needed for rapid and reliable identification of oysters. In this study, we developed multiplex genus- and species-specific PCR markers for the identification of oysters from China. We used the mitochondrial cytochrome oxidase I (COI) and nuclear 28S ribosomal RNA genes for marker development. DNA sequences from different species were obtained from GenBank or by direct sequencing. Sequences were aligned, and genus- and species-specific nucleotides were identified. Primers were designed for genus/species-specific amplification to generate fragments of different sizes. A multiplex set of genus- and species-specific primers from the 28S gene was able to separate C. ariakensis and C. hongkongensis from other species and assign oysters to four genera. A set of species-specific COI primers provided positive identification of all five Crassostrea species from China, C. ariakensis, C. hongkongensis, C. angulata, C. gigas, and C. sikamea in a single PCR. The multiplex PCR assays do not require fluorescence-labeling or post-PCR enzyme digestion, providing a simple, fast and reliable method for the identification of oysters from China.

89 citations

Journal ArticleDOI
TL;DR: The event-specific primers for insecticide-resistant maize, MON810, and herbicide-tolerance maize, NK603, have been designed and Simplex PCR and multiplex PCR detection method have been developed.
Abstract: In this study, the event-specific primers for insecticide-resistant maize, MON810, and herbicide-tolerance maize, NK603, have been designed. Simplex PCR and multiplex PCR detection method have been developed. The detection limit of the multiplex PCR is 0.5% for MON810 and NK603 in 50 ng of the template for one reaction. Quantitative methods based on real-time quantitative PCR were developed for MON810 and NK603. Plasmid pMulM2 as reference molecules for the detection of MON810 and NK603 was constructed. Quantification range was from 0.5 to 100% in 100 ng of the DNA template for one reaction. The precision of real-time Q-PCR detection methods, expressed as coefficient of variation for MON810 and NK603 varied from 1.97 to 8.01% and from 3.45 to 10.94%, respectively. The range agreed with European interlaboratories test results (25%). According to the results, the methods for quantitative detection of genetically modified maize were acceptable.

89 citations

Journal ArticleDOI
TL;DR: A new multiplex-PCR method was used that allowed single bacterial colonies grown on agar plates to be used directly in the PCR assay without preceding preparation and rapidly generated reliable information concerning the toxin-producing capacity of staphylococcal strains.
Abstract: As well as conventional methods such as immunodiffusion, ELISA, or agglutination for the detection of toxin production in Staphylococcus aureus, amplification techniques like PCR allow a very sensitive and specific identification of the genes responsible for enterotoxin B and C, and TSST-1 production. These toxins might be a cause of the toxic shock syndrome (TSS). For that reason an easy and quick test system for determining the toxin production pattern of S. aureus isolates is desirable so that strains suspected to be toxin producers may be identified much faster and easier. In the present investigation, a new multiplex-PCR method was used that allowed single bacterial colonies grown on agar plates to be used directly in the PCR assay without preceding preparation. This procedure generated information concerning the presence of seb, sec-1 and tst genes within 4 h in a single test. To analyse the sensitivity and the specificity of this procedure, 100 methicillin-resistant S. aureus (MRSA), 50 coagulase-negative staphylococci and 50 other eubacterial isolates were tested initially with sets of single primer pairs followed by a combined multiplex-PCR. Results of this amplification technique were compared to a conventional and widely used method for toxin detection, reversed passive latex agglutination (RPLA). With the RPLA assay results as the basis, sensitivity and specificity of the seb and tst primer sets were 100%, whereas sensitivity and specificity of the sec-1 primer set were 100% and 82%, respectively. With the sec-1 primer set, two isolates were identified as carrying the corresponding toxin gene although the RPLA test did not show any detectable toxin. The multiplex-PCR rapidly generated reliable information concerning the toxin-producing capacity of staphylococcal strains and could be easily integrated into a multiplex procedure described previously. The latter enabled the identification of specific PCR products for eubacteria and staphylococci as well as the detection of the coa and mecA genes.

89 citations

Journal ArticleDOI
TL;DR: This method could be used in conjunction with or as a substitute to other technically simple dominant marker methods for applications such as targeted quantitative trait loci mapping, especially in laboratories with a preference for agarose gel electrophoresis.
Abstract: A novel method for generating plant DNA markers was developed based on data mining for short conserved amino acid sequences in proteins and designing polymerase chain reaction (PCR) primers based on the corresponding DNA sequence. This method uses single 15- to 19-mer primers for PCR and an annealing temperature of 50°C. PCR amplicons are resolved using standard agarose gel electrophoresis. Using a reference set of rice genotypes, reproducible polymorphisms were generated. Since primers were designed using highly conserved regions of genes, markers should be generated in other plant species. We propose that this method could be used in conjunction with or as a substitute to other technically simple dominant marker methods for applications such as targeted quantitative trait loci mapping, especially in laboratories with a preference for agarose gel electrophoresis.

88 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220