scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
J.-P. Defoort1, M. Martin1, B. Casano1, S. Prato1, C. Camilla1, V. Fert1 
TL;DR: The results indicate that multiplex RT-PCR and flow cytometer microsphere-based hybridization assays, when combined, provide a rapid, sensitive, and specific method for the quantitation and detection of the major viral agents of infectious diseases in a single plasma sample.
Abstract: The feasibility of performing a multiplex assay for the detection of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) RNAs and hepatitis B virus (HBV) DNA is demonstrated. This assay is based (i) on the coamplification of a 142-bp fragment from the gag region of the HIV-1 genome and a 142-bp HIV-1 quantitation standard fragment, a 244-bp fragment from the 5' noncoding region of the HCV genome, and a 104-bp fragment from the pre-C and C gene regions of the HBV genome, using three sets of specific primers; (ii) on the capacity of these four biotinylated PCR products to hybridize to their specific oligonucleotide probe-coated microspheres; and (iii) on the ability of the flow cytometer to discriminate between distinct fluorescent-microsphere categories. Absence of cross-hybridization between the unrelated oligonucleotide probes and PCR products generated by the multiplex reverse transcription-PCR (RT-PCR) and the highly sensitive detection method allowed us to assess unambiguously the HIV-1 viral load and the infectious status of 35 serologically well-established clinical samples and 20 seronegative blood donor plasma samples tested. The results indicate that multiplex RT-PCR and flow cytometer microsphere-based hybridization assays, when combined, provide a rapid, sensitive, and specific method for the quantitation and detection of the major viral agents of infectious diseases in a single plasma sample.

82 citations

Journal ArticleDOI
TL;DR: The establishment and validation of three real-time fluorogenic (TaqMan) multiplex PCRs for the detection of C. perfringens alpha-, beta-, beta2-, epsilon-, entero- and iota-toxin genes are reported.

82 citations

Journal ArticleDOI
TL;DR: The results suggest that PCR cycle number must be kept as low as possible for accurate estimation of bacterial richness and that particular care must be taken when a DNA polymerase having proofreading activity is used.
Abstract: The effects of PCR cycle number and DNA polymerase type on 16S rRNA gene pyrosequencing analysis were investigated using an artificially prepared bacterial community (mock community). The bacterial richness was overestimated at increased PCR cycle number mostly due to the occurence of chimeric sequences, and this was more serious with a DNA polymerase having proofreading activity than with Taq DNA polymerase. These results suggest that PCR cycle number must be kept as low as possible for accurate estimation of bacterial richness and that particular care must be taken when a DNA polymerase having proofreading activity is used.

81 citations

Journal ArticleDOI
TL;DR: Direct and rapid PCR is incorporated in a "DNA-6h" service that can assist police investigations by rapidly deriving DNA information from trace evidence left by a perpetrator, searching the STR profile against a DNA database and reporting the outcomes to police or prosecution.
Abstract: Forensic DNA typing involves a multi-step workflow. Steps include DNA isolation, quantification, amplification of a set of short tandem repeat (STR) markers, separation of polymerase chain reaction (PCR) products by capillary electrophoresis (CE) and DNA profile analysis and interpretation. With that, the process takes around 10-12h. For several scenarios it may be very valuable to speed up this process and obtain an interpretable DNA profile, suited to search a DNA database, within a few hours. For instance in cases of national security, abduction with danger of life, risk of repetition by a serial perpetrator or when custody time of suspects is limited. By a direct and rapid PCR approach we reduced the total DNA profiling time to 2-3h after which genotyping information for the 10 STR markers plus the amelogenin (AMEL) marker present in the commercially available AmpFlSTR(®) SGM Plus™ (SGM+) profiling kit is obtained. This reduction in time is achieved by using the following elements: (1) the inhibitor tolerant, highly processive Phusion(®) Flash DNA polymerase; (2) a modified, non-adenylated allelic ladder; (3) the quick PIKO(®) thermal cycler system with ultra-thin walled reaction tubes; (4) profile interpretation guidelines with an increased allele calling threshold, modified stutter ratios and marked low-level artefact peaks and (5) regulation of sample input by the use of mini-tapes that lift a limited amount of cell material from swabs or fabrics. The procedure is specifically effective for high level DNA, single source samples such as samples containing saliva, blood, semen and hair roots. Success rates, defined as a complete DNA profile, depend on stain type and surface. Due to the use of tape lifting as the sampling technique, the swab or fabric remains dry and intact and can be analyzed at a later stage using regular procedures. Validation experiments were performed which showed that the protocol effectively instructs researchers unfamiliar with the procedure. We have incorporated direct and rapid PCR in a "DNA-6h" service that can assist police investigations by rapidly deriving DNA information from trace evidence left by a perpetrator, searching the STR profile against a DNA database and reporting the outcomes to police or prosecution.

81 citations

Journal ArticleDOI
TL;DR: Because the developed multiplex system uses the same biological source of DNA for individual identification profiling and simultaneously analyses various types of body fluid in one PCR reaction, this method will facilitate more efficient body fluid identification in forensic casework.
Abstract: Identification of body fluids found at crime scenes provides important information that can support a link between sample donors and actual criminal acts. Previous studies have reported that DNA methylation analysis at several tissue-specific differentially methylated regions (tDMRs) enables successful identification of semen, and the detection of certain bacterial DNA can allow for identification of saliva and vaginal fluid. In the present study, a method for detecting bacterial DNA was integrated into a previously reported multiplex methylation-sensitive restriction enzyme-polymerase chain reaction. The developed multiplex PCR was modified by the addition of a new semen-specific marker and by including amplicons for the 16S ribosomal RNA gene of saliva- and vaginal fluid-specific bacteria to improve the efficacy to detect a specific type of body fluid. Using the developed multiplex system, semen was distinguishable by unmethylation at the USP49, DACT1, and PFN3 tDMRs and by hypermethylation at L81528, and saliva could be identified by detection of saliva-specific bacteria, Veillonella atypica and/or Streptococcus salivarius. Additionally, vaginal fluid and menstrual blood were differentiated from other body fluids by hypomethylation at the PFN3 tDMR and the presence of vaginal fluid-specific bacteria, Lactobacillus crispatus and/or Lactobacillus gasseri. Because the developed multiplex system uses the same biological source of DNA for individual identification profiling and simultaneously analyses various types of body fluid in one PCR reaction, this method will facilitate more efficient body fluid identification in forensic casework.

81 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220